0

0

<<Signals and systems>> Chapter

php中文网

php中文网

发布时间:2016-06-07 15:07:07

|

1300人浏览过

|

来源于php中文网

原创

Signals and systems Chapter 2 Linear Time-Inverariant Systems 2.1 Discrete-time LTI system: the convolution sum 离散的信号可以用叠合的不同幅的delta函数表示出来 The discret-time unit impulse response and the convolution sum representation o

> Chapter 2 





                                                     linear time-inverariant systems


2.1 Discrete-time LTI system: the convolution sum


离散的信号可以用叠合的不同幅值的delta函数表示出来

<<Signals and systems>> Chapter




The discret-time unit impulse response and the convolution sum representation of LTI systems


<<Signals and systems>> Chapter



<<Signals and systems>> Chapter<<Signals and systems>> Chapter


上面的例子很清楚的一步步的解析了卷积和的过程.


卷积和的部分可以去看看我写的这篇Why should we use convolution?》

对于为什么是x[k]*h[n-k]

这里研究的是LTI系统,h[n]是LTI系统,对于不同时刻k输入x[k],系统的响应仅仅做偏移即可,

x[0]输入的对应h为h[0],x[1]对应的h为h[n-1]... x[k] 对应的就是h[n-k]


为了加深概念的理解,我们再看看时变系统卷积和的过程

输入是X[n],响应是h,注意时变系统的输入响应不同时刻不同,所以这里有三个不同的响应

<<Signals and systems>> Chapter


我们把输入看作impluse 序列,这样,利用delta函数的性质,就很容易get到输出了哇~


<<Signals and systems>> Chapter


要知道对系统输入的是一系列的impulse,于是应该把所有结果(x[-1]h[-1], ...,x[1]h[1])累加起来,得到输出y[n],

这就是为什么下面y[n]卷积和公式里面会有连加符号的原因!


<<Signals and systems>> Chapter


而正是由于时变系统的特性,会导致一种有趣的现象,对于输入x[n]和响应h[n]

<<Signals and systems>> Chapter

<<Signals and systems>> Chapter

计算过程中直接把h[n]反转,然后偏移k个单位,直接于原来的输入信号做乘法,然后把各个单位的结果做累加,得到的就是此刻的输出y[n],最后系统的输出这里书上有一定的“误导性”,之所以打双引号是因为这里h[n]是一个无限长的step function,所以后面无穷逼近于1/(1-alpha). 

<<Signals and systems>> Chapter

在计算机中,不可能用无穷序列来模拟...输入序列就是有限的,那么输出就会是

(length of x[n]) + (length of h[n]) -1。

为什么会是减一?想想,如果输出到(length of x[n]) + (length of h[n])个点的时候,两者已经没有重叠区域,于是得到的结果是0.这里我们不考虑这个没有意义的点.于是输出就只有(length of x[n]) + (length of h[n]) -1个点

这里我做了个例子



%code writer	:	EOF
%code date	:	2014.10 .1
%e-mail		:	jasonleaster@gmail.com
%code file	:	demo_for_convolution
%code purpose:
%             A demo for convolution in LTI-system
clear all
close all

% you could use this varible to define how many number of points in the input sequence.
points = 10;

% x is used as input points
% h is used as responce sequnce.

% %% input sequence one
% x = exp(-[0: (points-1)]);
% h = ones(1,points*10);

%% Input sequence two
alpha = 2;
x = [1 1 1 1 1];
h = alpha.^([0:6]);

length_x = size(x,2);
length_h = size(h,2);

figure(1);
subplot(121);
scatter(1:length_x,x,'r');
title('x[n]');
subplot(122);
scatter(1:length_h,h,'g');
title('h[n]');

output = zeros(1,length_x+length_h -1);

%% Kernel part of our convolution sum   :- )
for current_point_n= 1:length_x + length_h

        tmp = current_point_n;
        while(tmp > 0)

            if  current_point_n <= length_x  &&  (current_point_n - tmp + 1) <= length_h
                     output(current_point_n) = output(current_point_n) + x(tmp)*h(current_point_n - tmp + 1);
            end
            
            if current_point_n > length_x && current_point_n < (length_h + length_x -1)
                
                if tmp > length_x
                    tmp = tmp -1;
                    continue;
                else
                    if (current_point_n - tmp + 1) <= length_h
                     output(current_point_n) = output(current_point_n) + x(tmp)*h(current_point_n - tmp + 1);       
                    end
                end
                
            end
            
            tmp = tmp -1;
        end

end

figure(2);
scatter(1:size(output,2),output,'filled');
title('output[n]');


<<Signals and systems>> Chapter


上面的输入随意调整都性,程序还是比较健壮的


<<Signals and systems>> Chapter





Properties of LTI systems

交换律,结合律,分配律

<<Signals and systems>> Chapter


对于可逆性的说明demo:


<<Signals and systems>> Chapter                                                 



对于因果性的探讨,


<<Signals and systems>> Chapter





稳定性的探究:

<<Signals and systems>> Chapter



最后,要认识到,微分方程和差分方程仅仅是分别对于连续和离散系统的输入输出关系的描述而已,他们相似于都是对系统输入输出的描述,不可混淆对比.之前我胡乱的做对比,以至于很苦恼

这里记录了我思考的过程

http://blog.csdn.net/cinmyheart/article/details/39499967



热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
pixiv网页版官网登录与阅读指南_pixiv官网直达入口与在线访问方法
pixiv网页版官网登录与阅读指南_pixiv官网直达入口与在线访问方法

本专题系统整理pixiv网页版官网入口及登录访问方式,涵盖官网登录页面直达路径、在线阅读入口及快速进入方法说明,帮助用户高效找到pixiv官方网站,实现便捷、安全的网页端浏览与账号登录体验。

616

2026.02.13

微博网页版主页入口与登录指南_官方网页端快速访问方法
微博网页版主页入口与登录指南_官方网页端快速访问方法

本专题系统整理微博网页版官方入口及网页端登录方式,涵盖首页直达地址、账号登录流程与常见访问问题说明,帮助用户快速找到微博官网主页,实现便捷、安全的网页端登录与内容浏览体验。

194

2026.02.13

Flutter跨平台开发与状态管理实战
Flutter跨平台开发与状态管理实战

本专题围绕Flutter框架展开,系统讲解跨平台UI构建原理与状态管理方案。内容涵盖Widget生命周期、路由管理、Provider与Bloc状态管理模式、网络请求封装及性能优化技巧。通过实战项目演示,帮助开发者构建流畅、可维护的跨平台移动应用。

91

2026.02.13

TypeScript工程化开发与Vite构建优化实践
TypeScript工程化开发与Vite构建优化实践

本专题面向前端开发者,深入讲解 TypeScript 类型系统与大型项目结构设计方法,并结合 Vite 构建工具优化前端工程化流程。内容包括模块化设计、类型声明管理、代码分割、热更新原理以及构建性能调优。通过完整项目示例,帮助开发者提升代码可维护性与开发效率。

20

2026.02.13

Redis高可用架构与分布式缓存实战
Redis高可用架构与分布式缓存实战

本专题围绕 Redis 在高并发系统中的应用展开,系统讲解主从复制、哨兵机制、Cluster 集群模式及数据分片原理。内容涵盖缓存穿透与雪崩解决方案、分布式锁实现、热点数据优化及持久化策略。通过真实业务场景演示,帮助开发者构建高可用、可扩展的分布式缓存系统。

54

2026.02.13

c语言 数据类型
c语言 数据类型

本专题整合了c语言数据类型相关内容,阅读专题下面的文章了解更多详细内容。

29

2026.02.12

雨课堂网页版登录入口与使用指南_官方在线教学平台访问方法
雨课堂网页版登录入口与使用指南_官方在线教学平台访问方法

本专题系统整理雨课堂网页版官方入口及在线登录方式,涵盖账号登录流程、官方直连入口及平台访问方法说明,帮助师生用户快速进入雨课堂在线教学平台,实现便捷、高效的课程学习与教学管理体验。

15

2026.02.12

豆包AI网页版入口与智能创作指南_官方在线写作与图片生成使用方法
豆包AI网页版入口与智能创作指南_官方在线写作与图片生成使用方法

本专题汇总豆包AI官方网页版入口及在线使用方式,涵盖智能写作工具、图片生成体验入口和官网登录方法,帮助用户快速直达豆包AI平台,高效完成文本创作与AI生图任务,实现便捷智能创作体验。

598

2026.02.12

PostgreSQL性能优化与索引调优实战
PostgreSQL性能优化与索引调优实战

本专题面向后端开发与数据库工程师,深入讲解 PostgreSQL 查询优化原理与索引机制。内容包括执行计划分析、常见索引类型对比、慢查询优化策略、事务隔离级别以及高并发场景下的性能调优技巧。通过实战案例解析,帮助开发者提升数据库响应速度与系统稳定性。

56

2026.02.12

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号