
本文详细介绍了如何使用 JavaScript 检测线段与圆是否相交。通过计算线段到圆心的最近距离,并与圆的半径进行比较,可以有效地判断是否存在交点。文章提供了两种实现方法,一种避免了昂贵的平方根运算,另一种则能计算出交点距离。同时,提供了可运行的示例代码,方便读者理解和应用。
线段与圆相交检测的原理
判断线段与圆是否相交,核心在于计算线段到圆心的最短距离。如果这个最短距离小于或等于圆的半径,则线段与圆相交;反之,则不相交。
计算线段到圆心的最短距离,首先需要找到线段上距离圆心最近的点。这个点可以通过向量投影的方式求得。然后,计算圆心到该点的距离,并与圆的半径进行比较。
方法一:避免平方根运算的实现
以下代码展示了如何使用 rayInterceptsCircle 函数判断线段(ray)是否与圆相交,避免使用平方根运算,提高了效率。
立即学习“Java免费学习笔记(深入)”;
function rayInterceptsCircle(ray, circle) {
const dx = ray.p2.x - ray.p1.x;
const dy = ray.p2.y - ray.p1.y;
const u = Math.min(1, Math.max(0, ((circle.x - ray.p1.x) * dx + (circle.y - ray.p1.y) * dy) / (dy * dy + dx * dx)));
const nx = ray.p1.x + dx * u - circle.x;
const ny = ray.p1.y + dy * u - circle.y;
return nx * nx + ny * ny < circle.radius * circle.radius;
}代码解释:
- dx 和 dy 分别表示线段在 x 和 y 轴上的分量。
- u 是一个参数,表示线段上距离 ray.p1 最近的点的位置,它的值被限制在 0 到 1 之间,确保该点在线段上。
- nx 和 ny 表示圆心到线段上最近点的向量。
- 最后,比较 nx * nx + ny * ny (最近距离的平方) 与 circle.radius * circle.radius (半径的平方)。如果前者小于后者,则表示线段与圆相交。
优点:
- 避免了平方根运算,性能更高。
缺点:
- 只能判断是否相交,无法获取交点信息。
方法二:计算交点距离的实现
以下代码展示了如何使用 rayDist2Circle 函数计算线段与圆的交点距离。如果线段与圆不相交,则返回 Infinity。
function rayDist2Circle(ray, circle) {
const dx = ray.p2.x - ray.p1.x;
const dy = ray.p2.y - ray.p1.y;
const vcx = ray.p1.x - circle.x;
const vcy = ray.p1.y - circle.y;
var v = (vcx * dx + vcy * dy) * (-2 / Math.hypot(dx, dy));
const dd = v * v - 4 * (vcx * vcx + vcy * vcy - circle.radius * circle.radius);
if (dd <= 0) { return Infinity; }
return (v - Math.sqrt(dd)) / 2;
}代码解释:
- dx 和 dy 分别表示线段在 x 和 y 轴上的分量。
- vcx 和 vcy 表示线段起点到圆心的向量。
- v 是一个中间变量,用于简化计算。
- dd 是判别式,如果小于等于 0,则表示线段与圆不相交,返回 Infinity。
- 最后,计算交点距离并返回。
优点:
- 可以计算交点距离,获取更详细的相交信息。
缺点:
- 需要进行平方根运算,性能相对较低。
完整示例代码
以下是一个完整的示例代码,演示了如何使用这两种方法进行线段与圆的相交检测。
Line Circle Intersection
使用方法:
- 将代码保存为 HTML 文件。
- 使用浏览器打开该文件。
- 移动鼠标,观察线段与圆的相交情况。当线段与圆相交时,线段会变为红色,并显示交点。
总结
本文介绍了两种使用 JavaScript 检测线段与圆相交的方法。rayInterceptsCircle 函数通过避免平方根运算,提高了性能,适用于只需要判断是否相交的场景。rayDist2Circle 函数可以计算交点距离,获取更详细的相交信息,适用于需要精确计算交点位置的场景。开发者可以根据实际需求选择合适的方法。










