0

0

【CVPR 2020】Dynamic Convolution:在卷积核上的注意力

P粉084495128

P粉084495128

发布时间:2025-07-16 13:26:10

|

646人浏览过

|

来源于php中文网

原创

轻量级卷积神经网络因计算预算限制深度和宽度,导致表示能力与性能不足。为此提出动态卷积,不增加网络深度或宽度,每层用多个并行卷积核,依输入注意力动态聚合。这既因核小高效,又因非线性聚合增强表示能力。将其用于MobileNetv3 - Small,ImageNet分类TOP - 1精度提2.9%,仅增4%Flops,COCO关键点检测提2.9AP。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【cvpr 2020】dynamic convolution:在卷积核上的注意力 - php中文网

Dynamic Convolution:在卷积核上的注意力

摘要

        轻量级卷积神经网络(CNNs)由于其较低的计算预算限制了CNNs的深度(卷积层数)和宽度(通道数),导致其表示能力有限,从而导致性能下降。 为了解决这个问题,我们提出了动态卷积,一种在不增加网络深度或宽度的情况下增加模型复杂性的新设计。 动态卷积不是每层使用一个卷积核,而是根据依赖于输入的注意力动态聚合多个并行的卷积核。 集合多个核不仅由于卷积核小而计算效率高,而且由于这些核通过注意力以非线性方式聚合而具有更强的表示能力。 通过对最先进的体系结构MobileNetv3-Small简单地使用动态卷积,ImageNet分类的TOP-1精度提高了2.9%,仅增加了4%的Flops,COCO关键点检测的增益达到了2.9AP。

1. Dynamic Convolution

        常规卷积对所有实例使用同样的卷积核,这会损害模型对实例的表示能力。为此,如图3所示,本文提出了Dynamic Convolution。与CondConv思想一样:首先创建一个可学习的卷积核库,然后使用路由函数预测每一卷积核的权重,从而得到针对该实例的专门卷积核。具体实现有两点不同:

  1. CondConv仅使用一个简单的全连接层和Sigmoid函数生成权重(这会削弱表达能力),因此本文采用类似SE Layer的操作,激活函数使用Softmax函数(如图4所示,可以约束解空间)。
  2. 在早期Dynamic Convolution使用几乎均匀的注意力以保证在早期,卷积核库中的卷积核可以有效地更新。这个通过设置Softmax函数的温度参数来实现,早期阶段使用较大的温度,然后进行线性衰减到1。

【CVPR 2020】Dynamic Convolution:在卷积核上的注意力 - php中文网 【CVPR 2020】Dynamic Convolution:在卷积核上的注意力 - php中文网

2. 代码复现

2.1 下载并导入所需要的包

In [1]
%matplotlib inlineimport paddleimport numpy as npimport matplotlib.pyplot as pltfrom paddle.vision.datasets import Cifar10from paddle.vision.transforms import Transposefrom paddle.io import Dataset, DataLoaderfrom paddle import nnimport paddle.nn.functional as Fimport paddle.vision.transforms as transformsimport osimport matplotlib.pyplot as pltfrom matplotlib.pyplot import figurefrom paddle import ParamAttrfrom paddle.nn.layer.norm import _BatchNormBaseimport math

2.2 创建数据集

In [2]
train_tfm = transforms.Compose([
    transforms.Resize((130, 130)),
    transforms.RandomResizedCrop(128),
    transforms.RandomHorizontalFlip(0.5),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
])

test_tfm = transforms.Compose([
    transforms.Resize((128, 128)),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
])
In [3]
paddle.vision.set_image_backend('cv2')# 使用Cifar10数据集train_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='train', transform = train_tfm, )
val_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='test',transform = test_tfm)print("train_dataset: %d" % len(train_dataset))print("val_dataset: %d" % len(val_dataset))
train_dataset: 50000
val_dataset: 10000
In [4]
batch_size=512
In [5]
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4)

2.3 标签平滑

In [6]
class LabelSmoothingCrossEntropy(nn.Layer):
    def __init__(self, smoothing=0.1):
        super().__init__()
        self.smoothing = smoothing    def forward(self, pred, target):

        confidence = 1. - self.smoothing
        log_probs = F.log_softmax(pred, axis=-1)
        idx = paddle.stack([paddle.arange(log_probs.shape[0]), target], axis=1)
        nll_loss = paddle.gather_nd(-log_probs, index=idx)
        smooth_loss = paddle.mean(-log_probs, axis=-1)
        loss = confidence * nll_loss + self.smoothing * smooth_loss        return loss.mean()

2.4 AlexNet-DY

2.4.1 Dynamic Convolution

In [7]
class RoutingAttention(nn.Layer):
    def __init__(self, inplanes, num_experts, ratio=4, temperature=30, end_epoches=10):
        super().__init__()
        self.avgpool = nn.AdaptiveAvgPool2D(1)
        self.net = nn.Sequential(
            nn.Conv2D(inplanes, int(inplanes//ratio), 1),
            nn.ReLU(),
            nn.Conv2D(int(inplanes//ratio), num_experts, 1)
        )
        self.temperature = temperature
        self.step = self.temperature // end_epoches    def update_temperature(self):
        if self.temperature > 1:
            self.temperature -=self.step            if self.temperature < 1:
                self.temperature = 1
        return self.temperature    def set_temperature(self, temperature=1):
        self.temperature = temperature        return self.temperature    def forward(self, x):
        attn=self.avgpool(x)
        attn=self.net(attn).reshape((attn.shape[0], -1))        return F.softmax(attn / self.temperature)
In [8]
class DYConv2D(nn.Layer):
    def __init__(self, inplanes, outplanes, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias_attr=True, num_experts=4):
        super().__init__()
        self.inplanes=inplanes
        self.outplanes=outplanes
        self.kernel_size=kernel_size
        self.stride=stride
        self.padding=padding
        self.dilation=dilation
        self.groups=groups
        self.bias=bias_attr
        self.num_experts=num_experts
        self.routing=RoutingAttention(inplanes=inplanes, num_experts=num_experts)
        self.weight=self.create_parameter((num_experts, outplanes, inplanes // groups, kernel_size, kernel_size),
            default_initializer=nn.initializer.KaimingNormal()) # num_experts, out, in//g, k, k
        if(bias_attr):
            self.bias=self.create_parameter((num_experts, outplanes), default_initializer=nn.initializer.KaimingNormal())        else:
            self.bias=None

    def forward(self, x):
        b, c, h, w = x.shape
        attn = self.routing(x) # b, num_experts
        x = x.reshape((1, -1, h, w))    #由于DY CNN对每一个样本都有不同的权重,因此为了使用F.conv2d,将batch维放入特征C中
        weight = paddle.mm(attn, self.weight.reshape((self.num_experts, -1))).reshape(
            (-1, self.inplanes//self.groups, self.kernel_size, self.kernel_size))  # b*out, in//g, k, k
        if(self.bias is not None):
            bias=paddle.mm(attn, self.bias.reshape((self.num_experts, -1))).reshape([-1])
            output=F.conv2d(x, weight=weight, bias=bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups * b)        else:
            bias=None
            output=F.conv2d(x, weight=weight, bias=bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups * b)

        output=output.reshape((b, self.outplanes, output.shape[-2], output.shape[-1]))        return output
In [10]
model = DYConv2D(64, 128, 3, padding=1, stride=2, num_experts=4)
paddle.summary(model, (4, 64, 224, 224))
W0131 21:58:42.897727   396 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 11.2
W0131 21:58:42.901930   396 gpu_resources.cc:91] device: 0, cuDNN Version: 8.2.
-------------------------------------------------------------------------------
   Layer (type)         Input Shape          Output Shape         Param #    
===============================================================================
AdaptiveAvgPool2D-1 [[4, 64, 224, 224]]     [4, 64, 1, 1]            0       
     Conv2D-1         [[4, 64, 1, 1]]       [4, 16, 1, 1]          1,040     
      ReLU-5          [[4, 16, 1, 1]]       [4, 16, 1, 1]            0       
     Conv2D-2         [[4, 16, 1, 1]]        [4, 4, 1, 1]           68       
RoutingAttention-1  [[4, 64, 224, 224]]         [4, 4]               0       
===============================================================================
Total params: 1,108
Trainable params: 1,108
Non-trainable params: 0
-------------------------------------------------------------------------------
Input size (MB): 49.00
Forward/backward pass size (MB): 0.00
Params size (MB): 0.00
Estimated Total Size (MB): 49.01
-------------------------------------------------------------------------------
{'total_params': 1108, 'trainable_params': 1108}

2.4.2 AlexNet-DY

In [9]
class AlexNet_DY(nn.Layer):
    def __init__(self,num_classes=10):
        super().__init__()
        self.features=nn.Sequential(
            nn.Conv2D(3, 48, kernel_size=11, stride=4, padding=11//2),
            nn.BatchNorm(48),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=3, stride=2),
            nn.Conv2D(48, 128, kernel_size=5, padding=2),
            nn.BatchNorm(128),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=3, stride=2),
            DYConv2D(128, 192, kernel_size=3, stride=1, padding=1, num_experts=2),
            nn.BatchNorm(192),
            nn.ReLU(),
            DYConv2D(192, 192, kernel_size=3, stride=1, padding=1, num_experts=2),
            nn.BatchNorm(192),
            nn.ReLU(),
            DYConv2D(192, 128, kernel_size=3, stride=1, padding=1, num_experts=2),
            nn.BatchNorm(128),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=3, stride=2),
        )
        self.classifier=nn.Sequential(
            nn.Linear(3 * 3 * 128, 2048),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(2048, num_classes),
        )    def forward(self,x):
        x = self.features(x)
        x = paddle.flatten(x, 1)
        x=self.classifier(x)        return x
In [ ]
model = AlexNet_DY(num_classes=10)
paddle.summary(model, (4, 3, 128, 128))

【CVPR 2020】Dynamic Convolution:在卷积核上的注意力 - php中文网

陌言AI
陌言AI

陌言AI是一个一站式AI创作平台,支持在线AI写作,AI对话,AI绘画等功能

下载

2.5 训练

In [10]
learning_rate = 0.1n_epochs = 100paddle.seed(42)
np.random.seed(42)
In [11]
def init_weight(m):
        zeros = nn.initializer.Constant(0)
        ones = nn.initializer.Constant(1)        if isinstance(m, (nn.Conv2D, nn.Linear)):
            nn.initializer.KaimingNormal(m.weight)        if isinstance(m, nn.BatchNorm2D):
            zeros(m.bias)
            ones(m.weight)
In [ ]
work_path = 'work/model'model = AlexNet_DY(num_classes=10)
model.apply(init_weight)

criterion = LabelSmoothingCrossEntropy()

scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=learning_rate, milestones=[30, 60, 90], verbose=False)
optimizer = paddle.optimizer.SGD(parameters=model.parameters(), learning_rate=scheduler, weight_decay=1e-5)


gate = 0.0threshold = 0.0best_acc = 0.0val_acc = 0.0loss_record = {'train': {'loss': [], 'iter': []}, 'val': {'loss': [], 'iter': []}}   # for recording lossacc_record = {'train': {'acc': [], 'iter': []}, 'val': {'acc': [], 'iter': []}}      # for recording accuracyloss_iter = 0acc_iter = 0for epoch in range(n_epochs):    # ---------- Training ----------
    model.train()
    train_num = 0.0
    train_loss = 0.0

    val_num = 0.0
    val_loss = 0.0
    accuracy_manager = paddle.metric.Accuracy()
    val_accuracy_manager = paddle.metric.Accuracy()    print("#===epoch: {}, lr={:.10f}===#".format(epoch, optimizer.get_lr()))    for batch_id, data in enumerate(train_loader):
        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)

        logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = accuracy_manager.compute(logits, labels)
        accuracy_manager.update(acc)        if batch_id % 10 == 0:
            loss_record['train']['loss'].append(loss.numpy())
            loss_record['train']['iter'].append(loss_iter)
            loss_iter += 1

        loss.backward()

        optimizer.step()
        optimizer.clear_grad()

        train_loss += loss
        train_num += len(y_data)
    scheduler.step()

    total_train_loss = (train_loss / train_num) * batch_size
    train_acc = accuracy_manager.accumulate()
    acc_record['train']['acc'].append(train_acc)
    acc_record['train']['iter'].append(acc_iter)
    acc_iter += 1
    # Print the information.
    print("#===epoch: {}, train loss is: {}, train acc is: {:2.2f}%===#".format(epoch, total_train_loss.numpy(), train_acc*100))    # ---------- Validation ----------
    model.eval()    for batch_id, data in enumerate(val_loader):

        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)        with paddle.no_grad():
          logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = val_accuracy_manager.compute(logits, labels)
        val_accuracy_manager.update(acc)

        val_loss += loss
        val_num += len(y_data)

    total_val_loss = (val_loss / val_num) * batch_size
    loss_record['val']['loss'].append(total_val_loss.numpy())
    loss_record['val']['iter'].append(loss_iter)
    val_acc = val_accuracy_manager.accumulate()
    acc_record['val']['acc'].append(val_acc)
    acc_record['val']['iter'].append(acc_iter)    print("#===epoch: {}, val loss is: {}, val acc is: {:2.2f}%===#".format(epoch, total_val_loss.numpy(), val_acc*100))    # ===================save====================
    if val_acc > best_acc:
        best_acc = val_acc
        paddle.save(model.state_dict(), os.path.join(work_path, 'best_model.pdparams'))
        paddle.save(optimizer.state_dict(), os.path.join(work_path, 'best_optimizer.pdopt'))    for i in model.features.children():        if isinstance(i, DYConv2D):
            i.routing.update_temperature()print(best_acc)
paddle.save(model.state_dict(), os.path.join(work_path, 'final_model.pdparams'))
paddle.save(optimizer.state_dict(), os.path.join(work_path, 'final_optimizer.pdopt'))

【CVPR 2020】Dynamic Convolution:在卷积核上的注意力 - php中文网

2.6 实验结果

In [16]
def plot_learning_curve(record, title='loss', ylabel='CE Loss'):
    ''' Plot learning curve of your CNN '''
    maxtrain = max(map(float, record['train'][title]))
    maxval = max(map(float, record['val'][title]))
    ymax = max(maxtrain, maxval) * 1.1
    mintrain = min(map(float, record['train'][title]))
    minval = min(map(float, record['val'][title]))
    ymin = min(mintrain, minval) * 0.9

    total_steps = len(record['train'][title])
    x_1 = list(map(int, record['train']['iter']))
    x_2 = list(map(int, record['val']['iter']))
    figure(figsize=(10, 6))
    plt.plot(x_1, record['train'][title], c='tab:red', label='train')
    plt.plot(x_2, record['val'][title], c='tab:cyan', label='val')
    plt.ylim(ymin, ymax)
    plt.xlabel('Training steps')
    plt.ylabel(ylabel)
    plt.title('Learning curve of {}'.format(title))
    plt.legend()
    plt.show()
In [17]
plot_learning_curve(loss_record, title='loss', ylabel='CE Loss')
In [18]
plot_learning_curve(acc_record, title='acc', ylabel='Accuracy')
In [19]
import time
work_path = 'work/model'model = AlexNet_DY(num_classes=10)for i in model.features.children():        if isinstance(i, CondConv2D):
            i.routing.set_temperature()
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
aa = time.time()for batch_id, data in enumerate(val_loader):

    x_data, y_data = data
    labels = paddle.unsqueeze(y_data, axis=1)    with paddle.no_grad():
        logits = model(x_data)
bb = time.time()print("Throughout:{}".format(int(len(val_dataset)//(bb - aa))))
Throughout:1764
In [20]
def get_cifar10_labels(labels):
    """返回CIFAR10数据集的文本标签。"""
    text_labels = [        'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog',        'horse', 'ship', 'truck']    return [text_labels[int(i)] for i in labels]
In [21]
def show_images(imgs, num_rows, num_cols, pred=None, gt=None, scale=1.5):
    """Plot a list of images."""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()    for i, (ax, img) in enumerate(zip(axes, imgs)):        if paddle.is_tensor(img):
            ax.imshow(img.numpy())        else:
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        ax.set_title("pt: " + str(pred[i]) + "\ngt: " + str(gt[i]))    return axes
In [22]
work_path = 'work/model'X, y = next(iter(DataLoader(val_dataset, batch_size=18)))
model = AlexNet_DY(num_classes=10)for i in model.features.children():        if isinstance(i, CondConv2D):
            i.routing.set_temperature()
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
logits = model(X)
y_pred = paddle.argmax(logits, -1)
X = paddle.transpose(X, [0, 2, 3, 1])
axes = show_images(X.reshape((18, 128, 128, 3)), 1, 18, pred=get_cifar10_labels(y_pred), gt=get_cifar10_labels(y))
plt.show()
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

3. AlexNet

3.1 AlexNet

In [23]
class AlexNet(nn.Layer):
    def __init__(self,num_classes=10):
        super().__init__()
        self.features=nn.Sequential(
            nn.Conv2D(3,48, kernel_size=11, stride=4, padding=11//2),
            nn.BatchNorm2D(48),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=3,stride=2),
            nn.Conv2D(48, 128, kernel_size=5, padding=2),
            nn.BatchNorm2D(128),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=3,stride=2),
            nn.Conv2D(128, 192, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(192),
            nn.ReLU(),
            nn.Conv2D(192, 192, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(192),
            nn.ReLU(),
            nn.Conv2D(192, 128,kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2D(128),
            nn.ReLU(),
            nn.MaxPool2D(kernel_size=3, stride=2),
        )
        self.classifier=nn.Sequential(
            nn.Linear(3 * 3 * 128, 2048),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(2048, num_classes),
        )    def forward(self,x):
        x = self.features(x)
        x = paddle.flatten(x, 1)
        x=self.classifier(x)        return x
In [ ]
model = AlexNet(num_classes=10)
paddle.summary(model, (1, 3, 128, 128))

【CVPR 2020】Dynamic Convolution:在卷积核上的注意力 - php中文网

3.2 训练

In [25]
learning_rate = 0.1n_epochs = 100paddle.seed(42)
np.random.seed(42)
In [ ]
work_path = 'work/model1'model = AlexNet(num_classes=10)
model.apply(init_weight)

criterion = LabelSmoothingCrossEntropy()

scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=learning_rate, milestones=[30, 60, 90], verbose=False)
optimizer = paddle.optimizer.SGD(parameters=model.parameters(), learning_rate=scheduler, weight_decay=1e-5)


gate = 0.0threshold = 0.0best_acc = 0.0val_acc = 0.0loss_record1 = {'train': {'loss': [], 'iter': []}, 'val': {'loss': [], 'iter': []}}   # for recording lossacc_record1 = {'train': {'acc': [], 'iter': []}, 'val': {'acc': [], 'iter': []}}      # for recording accuracyloss_iter = 0acc_iter = 0for epoch in range(n_epochs):    # ---------- Training ----------
    model.train()
    train_num = 0.0
    train_loss = 0.0

    val_num = 0.0
    val_loss = 0.0
    accuracy_manager = paddle.metric.Accuracy()
    val_accuracy_manager = paddle.metric.Accuracy()    print("#===epoch: {}, lr={:.10f}===#".format(epoch, optimizer.get_lr()))    for batch_id, data in enumerate(train_loader):
        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)

        logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = accuracy_manager.compute(logits, labels)
        accuracy_manager.update(acc)        if batch_id % 10 == 0:
            loss_record1['train']['loss'].append(loss.numpy())
            loss_record1['train']['iter'].append(loss_iter)
            loss_iter += 1

        loss.backward()

        optimizer.step()
        optimizer.clear_grad()

        train_loss += loss
        train_num += len(y_data)
    scheduler.step()

    total_train_loss = (train_loss / train_num) * batch_size
    train_acc = accuracy_manager.accumulate()
    acc_record1['train']['acc'].append(train_acc)
    acc_record1['train']['iter'].append(acc_iter)
    acc_iter += 1
    # Print the information.
    print("#===epoch: {}, train loss is: {}, train acc is: {:2.2f}%===#".format(epoch, total_train_loss.numpy(), train_acc*100))    # ---------- Validation ----------
    model.eval()    for batch_id, data in enumerate(val_loader):

        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)        with paddle.no_grad():
          logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = val_accuracy_manager.compute(logits, labels)
        val_accuracy_manager.update(acc)

        val_loss += loss
        val_num += len(y_data)

    total_val_loss = (val_loss / val_num) * batch_size
    loss_record1['val']['loss'].append(total_val_loss.numpy())
    loss_record1['val']['iter'].append(loss_iter)
    val_acc = val_accuracy_manager.accumulate()
    acc_record1['val']['acc'].append(val_acc)
    acc_record1['val']['iter'].append(acc_iter)    print("#===epoch: {}, val loss is: {}, val acc is: {:2.2f}%===#".format(epoch, total_val_loss.numpy(), val_acc*100))    # ===================save====================
    if val_acc > best_acc:
        best_acc = val_acc
        paddle.save(model.state_dict(), os.path.join(work_path, 'best_model.pdparams'))
        paddle.save(optimizer.state_dict(), os.path.join(work_path, 'best_optimizer.pdopt'))print(best_acc)
paddle.save(model.state_dict(), os.path.join(work_path, 'final_model.pdparams'))
paddle.save(optimizer.state_dict(), os.path.join(work_path, 'final_optimizer.pdopt'))

【CVPR 2020】Dynamic Convolution:在卷积核上的注意力 - php中文网

3.3 实验结果

In [27]
plot_learning_curve(loss_record1, title='loss', ylabel='CE Loss')
In [28]
plot_learning_curve(acc_record1, title='acc', ylabel='Accuracy')
In [29]
##### import timework_path = 'work/model1'model = AlexNet(num_classes=10)
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
aa = time.time()for batch_id, data in enumerate(val_loader):

    x_data, y_data = data
    labels = paddle.unsqueeze(y_data, axis=1)    with paddle.no_grad():
        logits = model(x_data)
bb = time.time()print("Throughout:{}".format(int(len(val_dataset)//(bb - aa))))
Throughout:1822
In [30]
work_path = 'work/model1'X, y = next(iter(DataLoader(val_dataset, batch_size=18)))
model = AlexNet(num_classes=10)
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
logits = model(X)
y_pred = paddle.argmax(logits, -1)
X = paddle.transpose(X, [0, 2, 3, 1])
axes = show_images(X.reshape((18, 128, 128, 3)), 1, 18, pred=get_cifar10_labels(y_pred), gt=get_cifar10_labels(y))
plt.show()
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

4. 对比实验结果

Model Train Acc Val Acc Parameter
AlexNet-DY 0.7515 0.8209 8324368
AlexNet 0.7049 0.7872 7526794

相关专题

更多
Java编译相关教程合集
Java编译相关教程合集

本专题整合了Java编译相关教程,阅读专题下面的文章了解更多详细内容。

11

2026.01.21

C++多线程相关合集
C++多线程相关合集

本专题整合了C++多线程相关教程,阅读专题下面的的文章了解更多详细内容。

4

2026.01.21

无人机驾驶证报考 uom民用无人机综合管理平台官网
无人机驾驶证报考 uom民用无人机综合管理平台官网

无人机驾驶证(CAAC执照)报考需年满16周岁,初中以上学历,身体健康(矫正视力1.0以上,无严重疾病),且无犯罪记录。个人需通过民航局授权的训练机构报名,经理论(法规、原理)、模拟飞行、实操(GPS/姿态模式)及地面站训练后考试合格,通常15-25天拿证。

16

2026.01.21

Python多线程合集
Python多线程合集

本专题整合了Python多线程相关教程,阅读专题下面的文章了解更多详细内容。

1

2026.01.21

java多线程相关教程合集
java多线程相关教程合集

本专题整合了java多线程相关教程,阅读专题下面的文章了解更多详细内容。

4

2026.01.21

windows激活码分享 windows一键激活教程指南
windows激活码分享 windows一键激活教程指南

Windows 10/11一键激活可以通过PowerShell脚本或KMS工具实现永久或长期激活。最推荐的简便方法是打开PowerShell(管理员),运行 irm https://get.activated.win | iex 脚本,按提示选择数字激活(选项1)。其他方法包括使用HEU KMS Activator工具进行智能激活。

2

2026.01.21

excel表格操作技巧大全 表格制作excel教程
excel表格操作技巧大全 表格制作excel教程

Excel表格操作的核心技巧在于 熟练使用快捷键、数据处理函数及视图工具,如Ctrl+C/V(复制粘贴)、Alt+=(自动求和)、条件格式、数据验证及数据透视表。掌握这些可大幅提升数据分析与办公效率,实现快速录入、查找、筛选和汇总。

6

2026.01.21

毒蘑菇显卡测试网站入口 毒蘑菇测试官网volumeshader_bm
毒蘑菇显卡测试网站入口 毒蘑菇测试官网volumeshader_bm

毒蘑菇VOLUMESHADER_BM测试网站网址为https://toolwa.com/vsbm/,该平台基于WebGL技术通过渲染高复杂度三维分形图形评估设备图形处理能力,用户可通过拖动彩色物体观察画面流畅度判断GPU与CPU协同性能;测试兼容多种设备,但中低端手机易卡顿或崩溃,高端机型可能因发热降频影响表现,桌面端需启用独立显卡并使用支持WebGL的主流浏览器以确保准确结果

25

2026.01.21

github中文官网入口 github中文版官网网页进入
github中文官网入口 github中文版官网网页进入

github中文官网入口https://docs.github.com/zh/get-started,GitHub 是一种基于云的平台,可在其中存储、共享并与他人一起编写代码。 通过将代码存储在GitHub 上的“存储库”中,你可以: “展示或共享”你的工作。 持续“跟踪和管理”对代码的更改。

7

2026.01.21

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 11.3万人学习

Django 教程
Django 教程

共28课时 | 3.3万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号