0

0

最短路径算法有哪些?Dijkstra算法实现

月夜之吻

月夜之吻

发布时间:2025-08-20 13:34:01

|

841人浏览过

|

来源于php中文网

原创

Dijkstra算法用于寻找加权图中单源最短路径,其核心是贪心策略,通过维护距离数组和优先队列逐步确定最短路径,每次选择距离起点最近的未访问顶点并更新其邻居的距离,直到所有顶点都被访问。该算法无法处理负权边,因贪心策略可能导致错误的最短路径判断。对于含负权边的图,应使用Bellman-Ford算法;若需计算所有顶点间的最短路径,可采用Floyd-Warshall算法;而A*算法则适用于有启发信息的场景。Dijkstra算法的性能依赖于优先队列的实现方式:使用数组时时间复杂度为O(V²),二叉堆为O(E log V),斐波那契堆可达O(E + V log V),在实际应用中常借助Python的heapq模块实现高效版本。

最短路径算法有哪些?dijkstra算法实现

寻找最短路径,就像在迷宫中找出口一样,有各种不同的方法。Dijkstra算法是其中一种常用的,它能帮你找到从一个起点到其他所有点的最短距离。

解决方案:

Dijkstra算法是一种贪心算法,用于在加权图中寻找单源最短路径。它的基本思想是:维护一个已找到最短路径的顶点集合,以及一个未找到最短路径的顶点集合。每次从未找到最短路径的顶点中,选择距离起点最近的顶点,将其加入已找到最短路径的顶点集合,并更新起点到其他未找到最短路径的顶点的距离。

简单来说,就像是逐步扩张一个“安全区”,安全区内的点到起点的距离都是已知的最短距离,然后每次从安全区外选择一个离安全区最近的点加入安全区,直到所有点都加入安全区为止。

Dijkstra算法的实现步骤如下:

  1. 初始化:

    • 创建一个距离数组
      dist[]
      ,用于存储起点到每个顶点的距离。初始时,起点到自身的距离为0,到其他顶点的距离为无穷大。
    • 创建一个集合
      visited[]
      ,用于标记顶点是否已被访问。初始时,所有顶点都未被访问。
  2. 循环:

    • dist[]
      中选择一个未被访问的,且距离起点最近的顶点
      u
    • 将顶点
      u
      标记为已访问。
    • 对于顶点
      u
      的每个邻接顶点
      v
      ,如果
      dist[v] > dist[u] + weight(u, v)
      ,则更新
      dist[v] = dist[u] + weight(u, v)
      ,其中
      weight(u, v)
      表示顶点
      u
      到顶点
      v
      的边的权重。
  3. 重复步骤2,直到所有顶点都被访问,或者

    dist[]
    中所有未被访问的顶点距离起点都是无穷大。

    Videoleap
    Videoleap

    Videoleap是一个一体化的视频编辑平台

    下载

下面是一个Dijkstra算法的Python实现示例:

import heapq

def dijkstra(graph, start):
    """
    使用Dijkstra算法计算从start节点到图中所有其他节点的最短路径。

    Args:
        graph: 一个字典,表示图的邻接列表。键是节点,值是 (邻居节点, 权重) 的列表。
        start: 起始节点。

    Returns:
        一个字典,键是节点,值是从起始节点到该节点的最短距离。如果节点不可达,则距离为无穷大。
    """

    distances = {node: float('inf') for node in graph}
    distances[start] = 0
    priority_queue = [(0, start)]  # (距离, 节点)

    while priority_queue:
        dist, current_node = heapq.heappop(priority_queue)

        if dist > distances[current_node]:
            continue  # 已经找到更短的路径

        for neighbor, weight in graph[current_node]:
            distance = dist + weight
            if distance < distances[neighbor]:
                distances[neighbor] = distance
                heapq.heappush(priority_queue, (distance, neighbor))

    return distances

# 示例图
graph = {
    'A': [('B', 5), ('C', 1)],
    'B': [('A', 5), ('C', 2), ('D', 1)],
    'C': [('A', 1), ('B', 2), ('D', 4), ('E', 8)],
    'D': [('B', 1), ('C', 4), ('E', 3), ('F', 6)],
    'E': [('C', 8), ('D', 3), ('F', 2)],
    'F': [('D', 6), ('E', 2)]
}

start_node = 'A'
shortest_paths = dijkstra(graph, start_node)

print(f"从节点 {start_node} 到其他节点的最短路径:")
for node, distance in shortest_paths.items():
    print(f"到节点 {node} 的距离: {distance}")

Dijkstra算法的局限性是什么?

Dijkstra算法不能处理包含负权边的图。这是因为Dijkstra算法是基于贪心策略的,它每次选择距离起点最近的顶点,并认为该顶点到起点的距离就是最短距离。如果图中包含负权边,那么就可能存在一条路径,经过负权边后,距离比Dijkstra算法计算出来的距离更短。

例如,如果从A到B的距离是5,从B到C的距离是-10,那么从A到C的最短距离应该是5 + (-10) = -5,而不是Dijkstra算法计算出来的无穷大。

除了Dijkstra算法,还有哪些常用的最短路径算法?

除了Dijkstra算法,还有以下几种常用的最短路径算法:

  • Bellman-Ford算法: 可以处理包含负权边的图,但时间复杂度比Dijkstra算法高。
  • Floyd-Warshall算法: 可以计算图中所有顶点之间的最短路径,时间复杂度较高,适合小规模图。
  • A*算法: 一种启发式搜索算法,可以更有效地找到从起点到终点的最短路径,但需要提供启发函数。

选择哪种算法取决于具体的应用场景和图的规模。如果图不包含负权边,且只需要计算单源最短路径,那么Dijkstra算法是首选。如果图包含负权边,或者需要计算所有顶点之间的最短路径,那么就需要选择其他算法。

如何优化Dijkstra算法的性能?

Dijkstra算法的时间复杂度取决于所使用的数据结构。

  • 如果使用数组来实现优先队列,那么时间复杂度为O(V^2),其中V是顶点数。
  • 如果使用二叉堆来实现优先队列,那么时间复杂度为O(E log V),其中E是边数。
  • 如果使用斐波那契堆来实现优先队列,那么时间复杂度为O(E + V log V),在稠密图的情况下,性能更优。

在实际应用中,通常使用二叉堆或斐波那契堆来实现优先队列,以提高Dijkstra算法的性能。Python的

heapq
模块提供了二叉堆的实现,可以直接使用。

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
treenode的用法
treenode的用法

​在计算机编程领域,TreeNode是一种常见的数据结构,通常用于构建树形结构。在不同的编程语言中,TreeNode可能有不同的实现方式和用法,通常用于表示树的节点信息。更多关于treenode相关问题详情请看本专题下面的文章。php中文网欢迎大家前来学习。

539

2023.12.01

C++ 高效算法与数据结构
C++ 高效算法与数据结构

本专题讲解 C++ 中常用算法与数据结构的实现与优化,涵盖排序算法(快速排序、归并排序)、查找算法、图算法、动态规划、贪心算法等,并结合实际案例分析如何选择最优算法来提高程序效率。通过深入理解数据结构(链表、树、堆、哈希表等),帮助开发者提升 在复杂应用中的算法设计与性能优化能力。

21

2025.12.22

深入理解算法:高效算法与数据结构专题
深入理解算法:高效算法与数据结构专题

本专题专注于算法与数据结构的核心概念,适合想深入理解并提升编程能力的开发者。专题内容包括常见数据结构的实现与应用,如数组、链表、栈、队列、哈希表、树、图等;以及高效的排序算法、搜索算法、动态规划等经典算法。通过详细的讲解与复杂度分析,帮助开发者不仅能熟练运用这些基础知识,还能在实际编程中优化性能,提高代码的执行效率。本专题适合准备面试的开发者,也适合希望提高算法思维的编程爱好者。

28

2026.01.06

堆和栈的区别
堆和栈的区别

堆和栈的区别:1、内存分配方式不同;2、大小不同;3、数据访问方式不同;4、数据的生命周期。本专题为大家提供堆和栈的区别的相关的文章、下载、课程内容,供大家免费下载体验。

398

2023.07.18

堆和栈区别
堆和栈区别

堆(Heap)和栈(Stack)是计算机中两种常见的内存分配机制。它们在内存管理的方式、分配方式以及使用场景上有很大的区别。本文将详细介绍堆和栈的特点、区别以及各自的使用场景。php中文网给大家带来了相关的教程以及文章欢迎大家前来学习阅读。

575

2023.08.10

页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

414

2023.08.14

C++ 设计模式与软件架构
C++ 设计模式与软件架构

本专题深入讲解 C++ 中的常见设计模式与架构优化,包括单例模式、工厂模式、观察者模式、策略模式、命令模式等,结合实际案例展示如何在 C++ 项目中应用这些模式提升代码可维护性与扩展性。通过案例分析,帮助开发者掌握 如何运用设计模式构建高质量的软件架构,提升系统的灵活性与可扩展性。

8

2026.01.30

c++ 字符串格式化
c++ 字符串格式化

本专题整合了c++字符串格式化用法、输出技巧、实践等等内容,阅读专题下面的文章了解更多详细内容。

9

2026.01.30

java 字符串格式化
java 字符串格式化

本专题整合了java如何进行字符串格式化相关教程、使用解析、方法详解等等内容。阅读专题下面的文章了解更多详细教程。

8

2026.01.30

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
前端HTML5+CSS3(女神版)
前端HTML5+CSS3(女神版)

共199课时 | 28万人学习

最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 22.4万人学习

Django 教程
Django 教程

共28课时 | 3.7万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号