resize改变容器中元素的数量,涉及构造或销毁;reserve仅预分配内存,不改变元素数量,用于优化性能避免频繁重分配。

C++ STL容器中的
resize和
reserve方法,简单来说,一个关乎容器内元素的数量,另一个则专注于容器底层内存的容量预留。
resize会改变容器的实际大小,可能涉及元素的构造或销毁;而
reserve仅仅是预分配内存,不改变元素数量,也不触及元素的生命周期,它更多是为了优化性能,避免频繁的内存重新分配。
解决方案
理解
resize和
reserve的核心差异,是高效使用C++ STL容器的关键。它们虽然都与容器的“大小”有关,但操作的层面完全不同。
std::vector::reserve(size_type new_cap)
reserve的职责是确保容器的内部容量(
capacity())至少能容纳
new_cap个元素。它做的仅仅是内存预分配。
立即学习“C++免费学习笔记(深入)”;
-
行为: 如果
new_cap
大于当前的capacity()
,容器会重新分配一块更大的内存,并将现有元素复制或移动到新位置,然后释放旧内存。如果new_cap
小于或等于当前的capacity()
,reserve
通常不做任何事情(标准允许实现自由,但通常不会收缩容量)。 -
对
size()
和capacity()
的影响: 调用reserve
后,size()
不会改变,但capacity()
可能会增加。 - 元素: 不涉及元素的构造、销毁或赋值。容器中的元素数量和它们的值都保持不变。
-
目的: 主要用于性能优化。当你知道容器最终会包含大量元素时,提前调用
reserve
可以避免在后续添加元素(如push_back
)时频繁地进行内存重新分配,因为内存重新分配是一个开销相对较大的操作。每次重新分配,所有现有元素都需要被移动,这在处理大数据时可能导致显著的性能瓶颈。
示例:
std::vectorvec; std::cout << "初始: size=" << vec.size() << ", capacity=" << vec.capacity() << std::endl; // 输出: 初始: size=0, capacity=0 (或某个小值) vec.reserve(10); std::cout << "reserve(10)后: size=" << vec.size() << ", capacity=" << vec.capacity() << std::endl; // 输出: reserve(10)后: size=0, capacity=10 (或更大) for (int i = 0; i < 5; ++i) { vec.push_back(i); } std::cout << "push_back 5个元素后: size=" << vec.size() << ", capacity=" << vec.capacity() << std::endl; // 输出: push_back 5个元素后: size=5, capacity=10
std::vector::resize(size_type count)
和 std::vector::resize(size_type count, const T& value)
resize的职责是改变容器中实际元素的数量(
size())。
-
行为:
- 如果
count
大于当前的size()
:容器会添加新的元素,直到size()
达到count
。新添加的元素会进行值初始化(如果提供了value
,则用value
拷贝构造;否则进行默认构造)。这个过程可能伴随着内存重新分配,如果当前的capacity()
不足以容纳count
个元素。 - 如果
count
小于当前的size()
:容器会从末尾删除元素,直到size()
达到count
。被删除的元素会被销毁。
- 如果
-
对
size()
和capacity()
的影响:size()
会变为count
。capacity()
可能会增加(如果需要容纳更多元素),但通常不会减少(除非调用shrink_to_fit()
)。 - 元素: 涉及元素的构造、销毁或赋值。
-
目的: 用于改变容器中实际存储的元素数量。当你需要一个容器精确地拥有特定数量的元素,并且希望这些新元素被初始化时,
resize
是你的选择。
示例:
std::vectorvec; vec.resize(5); // 容器现在有5个元素,都是默认初始化的0 std::cout << "resize(5)后: size=" << vec.size() << ", capacity=" << vec.capacity() << std::endl; // 输出: resize(5)后: size=5, capacity=5 (或更大) for (int x : vec) { std::cout << x << " "; // 输出: 0 0 0 0 0 } std::cout << std::endl; vec.resize(3); // 容器现在有3个元素,最后两个被销毁 std::cout << "resize(3)后: size=" << vec.size() << ", capacity=" << vec.capacity() << std::endl; // 输出: resize(3)后: size=3, capacity=5 (或更大) for (int x : vec) { std::cout << x << " "; // 输出: 0 0 0 } std::cout << std::endl; vec.resize(7, 99); // 容器现在有7个元素,新增的4个是99 std::cout << "resize(7, 99)后: size=" << vec.size() << ", capacity=" << vec.capacity() << std::endl; // 输出: resize(7, 99)后: size=7, capacity=7 (或更大) for (int x : vec) { std::cout << x << " "; // 输出: 0 0 0 99 99 99 99 } std::cout << std::endl;
何时应优先使用reserve
来优化容器的性能?
我个人经验里,
reserve常常被低估,尤其是在处理大量数据,并且数据是逐步添加到容器中时。如果你预见到一个
std::vector最终会容纳数百、数千甚至更多元素,并且你主要通过
push_back或
emplace_back来填充它,那么提前调用
reserve几乎总是一个明智的选择。
想象一下,你有一个循环,需要向
std::vector中添加10000个元素。如果没有
reserve,
vector的
capacity会以指数增长的方式进行重新分配(例如,从0到1,再到2,再到4,8,16...)。每次重新分配,
vector都需要:
- 分配一块更大的新内存。
- 将所有现有元素从旧内存复制或移动到新内存。
- 销毁旧内存中的元素。
- 释放旧内存。
这些操作,特别是复制/移动元素,开销非常大。对于10000个元素,你可能会经历十几次甚至更多的重新分配。每一次都意味着大量的数据移动。而一旦你调用了
vec.reserve(10000),
vector会一次性分配好足够的内存。后续的10000次
push_back操作,只要不超过这个容量,就不会触发任何内存重新分配,元素可以直接在预留好的空间中构造。这带来的性能提升,在实际项目中是非常显著的。
我通常会这样思考:如果你有一个函数,它的任务是收集数据并返回一个
vector,而且你大概知道数据量的上限,那么在函数开始时就
reserve一下,能让整个过程跑得更顺畅。当然,前提是你对数据量有个合理的预估,否则过度
reserve也可能导致内存浪费。
2013年07月06日 V1.60 升级包更新方式:admin文件夹改成你后台目录名,然后补丁包里的所有文件覆盖进去。1.[新增]后台引导页加入非IE浏览器提示,后台部分功能在非IE浏览器下可能没法使用2.[改进]淘客商品管理 首页 列表页 内容页 的下拉项加入颜色来区别不同项3.[改进]后台新增/修改淘客商品,增加淘宝字样的图标和天猫字样图标改成天猫logo图标4.[改进]为统一名称,“分类”改
错误使用resize
或reserve
可能导致哪些内存问题和陷阱?
使用这两个函数,如果理解不深,确实会踩到一些坑。
reserve
的陷阱:
-
过度预留内存: 如果你
reserve
了远超实际所需的容量,比如reserve(1000000)
,但最终只push_back
了100个元素,那么你就会浪费大量的内存。这部分内存虽然没有被元素实际占用,但它被vector
“持有”了,其他地方就不能使用。在内存受限的环境下,这可能导致不必要的内存压力。虽然可以通过shrink_to_fit()
尝试回收多余容量,但这本身也是一个开销。 -
不改变
size()
的误解: 有些新手可能会误以为reserve(N)
之后,就可以直接通过vec[i]
来访问i < N
的元素。这是错误的!reserve
只改变capacity()
,size()
仍然是0。尝试访问vec[0]
会导致未定义行为,因为容器中根本没有元素。正确的做法是在reserve
后使用push_back
或emplace_back
来添加元素。
resize
的陷阱:
-
不必要的构造/销毁开销: 如果
resize
的目标大小大于当前大小,新添加的元素会被默认构造(或拷贝构造)。如果你的元素类型是自定义的复杂对象,其构造函数可能涉及资源分配(如文件句柄、网络连接、其他内存分配等),那么resize
操作可能会产生巨大的性能开销。我见过不少新手在用resize
时,没考虑到自定义类型默认构造的开销,尤其是在循环中频繁resize
,那性能下降得真是肉眼可见。 -
默认值问题:
resize(count)
会用默认值初始化新元素。对于int
、double
等基本类型,默认值通常是0。但对于自定义类型,你需要确保其默认构造函数是可用的,并且其行为符合你的预期。如果你期望一个特定的初始值,务必使用resize(count, value)
。 -
意外的截断: 如果你
resize
到一个小于当前size()
的值,那么超出部分的元素会被销毁。如果这些元素持有重要的资源,或者它们的销毁会触发副作用,你必须确保这是你想要的行为。例如,一个vector
存储了指向动态分配内存的智能指针,resize
可能会意外地释放这些资源。
总的来说,关键在于理解
size和
capacity这两个概念的根本区别,以及它们如何影响内存和元素的生命周期。
resize
和reserve
可以一起使用吗?它们的最佳实践是什么?
是的,
resize和
reserve不仅可以一起使用,在某些场景下,它们组合起来能提供更精细的控制和更优的性能。这两种方法各自解决不同的问题,结合使用时,能兼顾内存预分配的效率和元素数量的精确控制。
组合使用的场景和最佳实践:
最常见的组合模式是:先reserve
预留内存,然后通过push_back
(或emplace_back
)填充元素,最后如果需要,再用resize
调整最终的元素数量。
-
预知最大容量,逐步填充: 如果你知道容器可能达到的最大元素数量(或一个合理的上限),但实际填充的元素数量可能不确定,或者需要通过循环逐个添加,那么先
reserve
是最佳选择。std::vector
objects; objects.reserve(1000); // 预留1000个MyObject的内存空间 // 假设通过某个循环或算法添加元素 for (int i = 0; i < some_dynamic_count; ++i) { if (condition_met) { objects.push_back(MyObject(i)); // 高效添加,避免重新分配 } } // 此时 objects.size() 可能小于等于 1000 这种模式下,
reserve
保证了push_back
的高效性,而size()
则准确反映了实际添加的元素数量。 -
需要精确数量的占位符,并可能后续修改: 如果你需要一个容器,一开始就包含特定数量的元素(作为占位符),并且这些元素可能在后续被修改,那么直接使用
resize
。std::vector
scores; scores.resize(5, 0); // 创建一个包含5个0的vector,作为初始分数 // 后续可以修改这些分数 scores[0] = 95; scores[4] = 88; 这种情况下,
resize
直接设定了容器的逻辑大小和初始内容。 -
预留容量并填充,然后截断或扩展: 这是一种更复杂的组合,它结合了前两者的优点。
std::vector
data_points; data_points.reserve(200); // 预计最多有200个数据点 // 收集数据,通过 push_back 添加 for (int i = 0; i < 150; ++i) { // 假设实际只收集了150个 data_points.push_back(static_cast (i) * 1.5); } // 此时 data_points.size() 是 150,capacity 至少是 200。 // 如果现在需要确保容器正好有 180 个元素,多余的用 0.0 填充 data_points.resize(180, 0.0); // 现在 data_points.size() 是 180,capacity 至少是 200。 // 如果需要减少到 100 个元素 data_points.resize(100); // 后面的80个元素被销毁 我通常是这样用:如果我能大致估算出最终的元素数量,我会先
reserve
一下。然后,如果我需要填充一个特定数量的占位符,或者要截断容器,我才会动用resize
。这是一种很务实的做法,兼顾了性能和逻辑清晰度。
总结最佳实践:
-
reserve
:当你主要通过push_back
或emplace_back
向容器添加元素,并且能大致预估最终元素数量时,使用reserve
来避免频繁的内存重新分配,优化性能。 -
resize
:当你需要容器精确地包含特定数量的元素,并且希望这些元素被默认构造或拷贝构造为特定值时,使用resize
。它直接改变容器的逻辑大小。 -
不要混淆:永远记住
reserve
只影响capacity()
,不影响size()
;resize
则改变size()
,并可能影响capacity()
。
理解这两种操作的内在机制和应用场景,是写出高效、健出C++代码的基础。








