0

0

理解OpenAI API限速:避免Assistants API中隐藏的请求陷阱

DDD

DDD

发布时间:2025-09-23 11:11:22

|

372人浏览过

|

来源于php中文网

原创

理解OpenAI API限速:避免Assistants API中隐藏的请求陷阱

在使用OpenAI Assistants API时,即使看似已通过time.sleep()控制请求频率,用户仍可能遭遇意外的速率限制错误。核心原因在于,不仅主操作(如创建Run)会计入请求限额,连用于轮询Run状态的client.beta.threads.runs.retrieve()调用也同样计入。本文将深入分析这一常见误区,并提供通过调整轮询间隔和优化代码来有效管理API请求频率的专业教程。

理解OpenAI API限速机制

openai api的限速机制旨在确保服务的公平使用和稳定性。限速通常以每分钟请求数(rpm)和每分钟令牌数(tpm)来衡量。对于新用户或特定模型,限速可能相对较低,例如gpt-3.5-turbo-1106模型可能只有3 rpm的限制。

一个常见的误解是,只有“主要”或“显式”的API调用才会计入限额。然而,所有与API服务器进行的交互都计为一次请求。这意味着,即使是用于检查异步任务状态的轮询调用,也同样会消耗你的请求限额。

案例分析:Assistants API中的隐藏请求

考虑以下使用OpenAI Assistants API处理多个文件的场景。用户希望批量处理10个文本文件,每个文件都通过Assistants API进行分类。为了避免限速,用户在处理完每个文件后,在循环外部设置了20秒的延迟:

import pandas as pd
import time
from openai import OpenAI

# ... (API客户端和助手初始化代码) ...

files = ["file1.txt", "file2.txt", ...] # 假设有10个文件

jacket_classifications = pd.DataFrame(columns = ["jacket", "is_nomination"])

for file in files:
    # 1. 创建文件上传请求
    gpt_file = client.files.create(file=open(file, "rb"), purpose='assistants')

    # 2. 创建消息请求
    message = client.beta.threads.messages.create(
        thread_id=thread.id, role="user", content="...", file_ids=[gpt_file.id]
    )

    # 3. 创建Run请求
    run = client.beta.threads.runs.create(
        thread_id=thread.id, assistant_id=assistant.id
    )

    # 4. 轮询Run状态
    while run.status != "completed":
        run = client.beta.threads.runs.retrieve( # ⚠️ 此处是关键!
            thread_id=thread.id, run_id=run.id
        )
        print(run.status)
        if run.status == "failed":
            print(run.last_error)
            exit()

    # ... (处理结果代码) ...

    print("Sleeping 20 seconds to ensure API call rate limit not surpassed")
    time.sleep(20) # 循环外部的延迟

尽管在每个文件处理周期后有20秒的延迟,用户仍然频繁遇到rate_limit_exceeded错误。错误信息明确指出“Rate limit reached for gpt-3.5-turbo-1106 ... on requests per min (RPM): Limit 3, Used 3, Requested 1.”,这表明在某个1分钟窗口内,API请求数超过了3次。

问题根源在于:while run.status != "completed" 循环内部的 client.beta.threads.runs.retrieve() 调用。 每次循环迭代都会向OpenAI API发送一个请求,以检查Run的最新状态。如果Run的执行时间较长,或者代码执行速度过快,这个循环会在短时间内发出大量的retrieve请求。

例如,在一个文件处理周期内:

  • client.files.create():1次请求
  • client.beta.threads.messages.create():1次请求
  • client.beta.threads.runs.create():1次请求
  • client.beta.threads.runs.retrieve():N次请求(N取决于Run的执行时间)

即使每次文件处理之间有20秒的延迟,如果N次retrieve请求在几秒内完成,那么在1分钟内,很容易就会累积超过3次请求,从而触发限速。

解决方案与优化策略

解决此问题的关键在于,不仅要控制“主”操作之间的间隔,还要控制异步任务轮询的频率。

PictoGraphic
PictoGraphic

AI驱动的矢量插图库和插图生成平台

下载

1. 在轮询循环中引入延迟

最直接的解决方案是在 while 循环内部,每次 run.retrieve() 调用之后添加一个延迟。这将显著降低轮询频率,从而减少在给定时间内发出的API请求总数。

import pandas as pd
import time
from openai import OpenAI

# ... (API客户端和助手初始化代码) ...

files = ["file1.txt", "file2.txt", ...]

jacket_classifications = pd.DataFrame(columns = ["jacket", "is_nomination"])

for file in files:
    gpt_file = client.files.create(file=open(file, "rb"), purpose='assistants')
    message = client.beta.threads.messages.create(
        thread_id=thread.id, role="user", content="...", file_ids=[gpt_file.id]
    )
    run = client.beta.threads.runs.create(
        thread_id=thread.id, assistant_id=assistant.id
    )

    # 轮询Run状态,并在每次轮询后增加延迟
    while run.status != "completed":
        run = client.beta.threads.runs.retrieve(
            thread_id=thread.id, run_id=run.id
        )
        print(run.status)
        if run.status == "failed":
            print(run.last_error)
            exit()

        # ⚠️ 在轮询请求后增加延迟
        # 假设Run通常在几十秒内完成,每次轮询间隔40秒可以有效控制请求频率
        time.sleep(40) 

    # ... (处理结果代码) ...

    # 外部循环的延迟可以根据总请求量和限速进一步调整,甚至可以移除
    # print("Sleeping 20 seconds to ensure API call rate limit not surpassed")
    # time.sleep(20)

通过在 while 循环内部添加 time.sleep(40),每次 retrieve 请求之间至少间隔40秒。结合一个文件处理周期中其他3个请求,如果Run通常在1-2次轮询内完成,那么处理一个文件可能总共发出 3(创建)+ 1-2(轮询)= 4-5个请求。如果每个文件处理间隔较长,或者总处理时间较长,就能有效避免限速。

2. 考虑更健壮的重试机制:指数退避

对于生产环境或更复杂的应用,仅仅依靠固定的 time.sleep() 可能不够灵活。指数退避(Exponential Backoff) 是一种更推荐的重试策略,它在每次重试失败后,逐渐增加等待时间。这不仅有助于遵守速率限制,还能优雅地处理临时的API服务中断。

Python库如 tenacity 或 backoff 可以轻松实现指数退避:

import time
from tenacity import retry, wait_exponential, stop_after_attempt, RetriableError
from openai import OpenAI

# ... (API客户端和助手初始化代码) ...

# 定义一个带有指数退避的重试函数
@retry(wait=wait_exponential(multiplier=1, min=4, max=60), stop=stop_after_attempt(10))
def call_openai_api_with_retry(api_call_func, *args, **kwargs):
    try:
        return api_call_func(*args, **kwargs)
    except Exception as e: # 捕获OpenAI API可能抛出的限速或其他错误
        print(f"API call failed, retrying... Error: {e}")
        raise RetriableError(e) # 抛出可重试错误,让tenacity捕获

# 在轮询Run状态时使用重试机制
def get_run_status_with_backoff(thread_id, run_id):
    while True:
        try:
            run = call_openai_api_with_retry(client.beta.threads.runs.retrieve, thread_id=thread_id, run_id=run_id)
            if run.status != "completed":
                print(f"Run status: {run.status}. Waiting before next check...")
                # 在轮询之间仍然可以有基础的延迟,防止过于频繁的重试
                time.sleep(5) 
            else:
                return run
        except RetriableError:
            # tenacity 会处理重试逻辑,这里可以记录日志
            print("Encountered retriable error, tenacity will handle backoff.")
            time.sleep(1) # 短暂等待,避免无限循环的日志输出
        except Exception as e:
            print(f"An unrecoverable error occurred: {e}")
            break

# ... (在主循环中使用) ...
# run = get_run_status_with_backoff(thread.id, run.id)

3. 异步处理与Webhook(高级)

对于需要处理大量请求且对延迟敏感的场景,可以考虑使用异步编程结合Webhook。当Run完成时,OpenAI API可以向你的服务器发送一个通知,而不是你持续轮询。这可以极大地减少API请求数量,但需要更复杂的架构来接收和处理Webhook。

注意事项

  • 理解不同模型的限速: 不同的OpenAI模型(如GPT-3.5 Turbo、GPT-4)和不同的账户级别(免费、付费、企业)都有不同的速率限制。务必查阅OpenAI官方文档中关于你所使用模型和账户的最新限速信息。
  • 监控API使用情况: OpenAI平台提供了API使用情况仪表板,你可以通过它实时监控你的请求量和令牌使用情况,帮助你更好地理解和调整你的调用策略。
  • 考虑请求并发性: 如果你的应用是多线程或多进程的,每个线程/进程都会独立地向API发送请求,这会更快地触及限速。在这种情况下,需要一个全局的限速器来协调所有请求。
  • API文档是你的朋友: 仔细阅读OpenAI的API文档,特别是关于限速和异步操作的部分,可以帮助你避免许多常见问题

总结

在使用OpenAI Assistants API时,避免速率限制错误的关键在于对所有API调用的全面理解,包括那些用于轮询异步任务状态的“隐藏”请求。通过在轮询循环中引入适当的延迟,或采用更高级的指数退避策略,可以有效管理API请求频率,确保应用稳定运行并遵守API使用政策。对API行为的深入洞察和代码的细致优化,是构建健壮、高效AI应用的基础。

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
while的用法
while的用法

while的用法是“while 条件: 代码块”,条件是一个表达式,当条件为真时,执行代码块,然后再次判断条件是否为真,如果为真则继续执行代码块,直到条件为假为止。本专题为大家提供while相关的文章、下载、课程内容,供大家免费下载体验。

94

2023.09.25

线程和进程的区别
线程和进程的区别

线程和进程的区别:线程是进程的一部分,用于实现并发和并行操作,而线程共享进程的资源,通信更方便快捷,切换开销较小。本专题为大家提供线程和进程区别相关的各种文章、以及下载和课程。

503

2023.08.10

Python 多线程与异步编程实战
Python 多线程与异步编程实战

本专题系统讲解 Python 多线程与异步编程的核心概念与实战技巧,包括 threading 模块基础、线程同步机制、GIL 原理、asyncio 异步任务管理、协程与事件循环、任务调度与异常处理。通过实战示例,帮助学习者掌握 如何构建高性能、多任务并发的 Python 应用。

166

2025.12.24

java多线程相关教程合集
java多线程相关教程合集

本专题整合了java多线程相关教程,阅读专题下面的文章了解更多详细内容。

14

2026.01.21

C++多线程相关合集
C++多线程相关合集

本专题整合了C++多线程相关教程,阅读专题下面的的文章了解更多详细内容。

15

2026.01.21

俄罗斯Yandex引擎入口
俄罗斯Yandex引擎入口

2026年俄罗斯Yandex搜索引擎最新入口汇总,涵盖免登录、多语言支持、无广告视频播放及本地化服务等核心功能。阅读专题下面的文章了解更多详细内容。

167

2026.01.28

包子漫画在线官方入口大全
包子漫画在线官方入口大全

本合集汇总了包子漫画2026最新官方在线观看入口,涵盖备用域名、正版无广告链接及多端适配地址,助你畅享12700+高清漫画资源。阅读专题下面的文章了解更多详细内容。

35

2026.01.28

ao3中文版官网地址大全
ao3中文版官网地址大全

AO3最新中文版官网入口合集,汇总2026年主站及国内优化镜像链接,支持简体中文界面、无广告阅读与多设备同步。阅读专题下面的文章了解更多详细内容。

74

2026.01.28

php怎么写接口教程
php怎么写接口教程

本合集涵盖PHP接口开发基础、RESTful API设计、数据交互与安全处理等实用教程,助你快速掌握PHP接口编写技巧。阅读专题下面的文章了解更多详细内容。

2

2026.01.28

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 22.3万人学习

Django 教程
Django 教程

共28课时 | 3.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号