0

0

从自定义经验累积分布函数(CDF)高效抽样:Numpy与Scipy实践指南

碧海醫心

碧海醫心

发布时间:2025-11-12 11:18:57

|

443人浏览过

|

来源于php中文网

原创

从自定义经验累积分布函数(CDF)高效抽样:Numpy与Scipy实践指南

本文详细介绍了如何从自定义的经验累积分布函数(cdf)中进行数据抽样。我们将利用逆变换抽样原理,结合python的numpy和scipy库,实现两种抽样方法:一是直接基于cdf离散点进行阶梯式插值抽样,二是采用样条等平滑技术对cdf进行插值后抽样,以生成更平滑、更符合实际分布的样本。

理解经验累积分布函数 (Empirical CDF)

经验累积分布函数(Empirical CDF, ECDF)是根据观测数据而非理论模型构建的CDF。它通过统计样本中小于或等于某个特定值的观测比例来估计随机变量的CDF。与理论CDF通常是连续函数不同,经验CDF通常由一系列离散点定义,这些点代表了观测到的值及其对应的累积概率。

例如,一个由DataFrame定义的经验CDF可能包含两列:x 值(随机变量的取值)和 cdf 值(对应 x 的累积概率)。

逆变换抽样原理 (Inverse Transform Sampling)

从任何给定的累积分布函数 F(x) 中进行抽样的核心方法是逆变换抽样(Inverse Transform Sampling)。其基本原理如下:

  1. 生成一个在 (0, 1) 区间上均匀分布的随机数 U。
  2. 计算 X = F⁻¹(U),其中 F⁻¹ 是 F 的逆函数。
  3. 得到的 X 值将服从原始CDF F(x) 所描述的分布。

在处理经验CDF时,由于 F(x) 通常不是一个解析函数,我们需要通过插值来近似其逆函数 F⁻¹(U)。

方法一:直接从经验CDF抽样(阶梯式插值)

当不需要对CDF进行平滑处理时,可以直接利用经验CDF的离散点进行抽样。这种方法通常采用分段线性插值,将均匀随机数映射到CDF的 x 值。Numpy库的 np.interp 函数非常适合这种场景。

np.interp(x, xp, fp) 函数的作用是:给定一组已知的数据点 (xp, fp),它会根据 xp 和 fp 之间的关系,对 x 中的每个值进行线性插值,并返回对应的 fp 值。在这里,我们将均匀随机数作为 x,CDF的概率值作为 xp,CDF的 x 值作为 fp,从而实现逆变换抽样。

示例代码:

磁力开创
磁力开创

快手推出的一站式AI视频生产平台

下载
import pandas as pd
import numpy as np

# 定义一个自定义的经验CDF
cdf_data = pd.DataFrame.from_dict(
    {'x':[10e6, 20e6, 50e6, 100e6, 250e6],
     'cdf':[0.4, 0.6, 0.7, 0.8, 1]}
)

# 1. 生成10,000个在(0, 1)区间上的均匀随机数
num_samples = 10000
uniform_samples = np.random.uniform(0, 1, num_samples)

# 2. 使用numpy.interp进行抽样
# uniform_samples 作为待查找的概率值 (x)
# cdf_data['cdf'] 作为已知概率点 (xp)
# cdf_data['x'] 作为已知x值 (fp)
# np.interp 会根据 uniform_samples 在 cdf_data['cdf'] 中的位置,
# 线性插值出 cdf_data['x'] 中对应的值。
samples_direct = np.interp(uniform_samples, cdf_data['cdf'], cdf_data['x'])

print("直接抽样结果示例 (前10个):")
print(samples_direct[:10])
print(f"抽样结果的最小值: {samples_direct.min():.2f}, 最大值: {samples_direct.max():.2f}")

代码解释:np.interp 函数通过在 cdf_data['cdf'] 中查找 uniform_samples 对应的位置,然后返回 cdf_data['x'] 中相应的线性插值结果。这种方法简单高效,生成的样本值将严格落在原始CDF的 x 范围内。

方法二:平滑经验CDF后抽样(样条插值)

在某些情况下,如果原始CDF数据点较少,或者希望生成的样本分布更平滑、更连续,可以对经验CDF进行平滑插值。Scipy库的 scipy.interpolate.interp1d 函数提供了多种插值方法,包括线性、二次、三次样条等,可以用来构建一个更连续的CDF逆函数。

示例代码:

from scipy.interpolate import interp1d
import matplotlib.pyplot as plt # 可选:用于可视化

# 沿用之前的 cdf_data 和 uniform_samples

# 1. 使用scipy.interpolate.interp1d创建插值函数
# kind参数指定插值类型:'linear'(线性)、'quadratic'(二次)、'cubic'(三次样条)等
# bounds_error=False 允许插值点超出原始数据范围,此时会使用 fill_value 进行外推或填充
# fill_value=(cdf_data['x'].iloc[0], cdf_data['x'].iloc[-1])
#   - 如果插值点小于最小xp值,使用cdf_data['x'].iloc[0]
#   - 如果插值点大于最大xp值,使用cdf_data['x'].iloc[-1]
#   这确保了均匀随机数0和1也能得到有效的x值,且不会超出原始x的物理范围。
cdf_interpolator_linear = interp1d(cdf_data['cdf'], cdf_data['x'], kind='linear',
                                   bounds_error=False, fill_value=(cdf_data['x'].iloc[0], cdf_data['x'].iloc[-1]))
cdf_interpolator_cubic = interp1d(cdf_data['cdf'], cdf_data['x'], kind='cubic',
                                  bounds_error=False, fill_value=(cdf_data['x'].iloc[0], cdf_data['x'].iloc[-1]))

# 2. 使用插值函数进行抽样
samples_smoothed_linear = cdf_interpolator_linear(uniform_samples)
samples_smoothed_cubic = cdf_interpolator_cubic(uniform_samples)

print("\n平滑抽样结果示例 (线性插值, 前10个):")
print(samples_smoothed_linear[:10])
print(f"抽样结果的最小值: {samples_smoothed_linear.min():.2f}, 最大值: {samples_smoothed_linear.max():.2f}")

print("\n平滑抽样结果示例 (三次样条插值, 前10个):")
print(samples_smoothed_cubic[:10])
print(f"抽样结果的最小值: {samples_smoothed_cubic.min():.2f}, 最大值: {samples_smoothed_cubic.max():.2f}")

# 可选:通过直方图可视化比较不同方法的样本分布
# plt.figure(figsize=(12, 6))
# plt.hist(samples_direct, bins=50, density=True, alpha=0.5, label='直接抽样 (np.interp)')
# plt.hist(samples_smoothed_linear, bins=50, density=True, alpha=0.5, label='平滑抽样 (interp1d, linear)')
# plt.hist(samples_smoothed_cubic, bins=50, density=True, alpha=0.5, label='平滑抽样 (interp1d, cubic)')
# plt.title('不同抽样方法下的样本分布')
# plt.xlabel('X值')
# plt.ylabel('密度')
# plt.legend()
# plt.grid(True)
# plt.show()

代码解释:interp1d 创建了一个可调用的插值函数。通过设置 kind 参数,可以选择不同的插值算法。'linear' 行为与 np.interp 类似,而 'cubic'(三次样条)会生成一条更平滑的曲线,从而产生更连续的样本分布。bounds_error=False 和 fill_value 参数是关键,它们确保了即使均匀随机数落在CDF定义域的边缘(例如,非常接近0或1),也能得到一个有效的 x 值,并将其限制在原始 x 数据的物理范围内。

注意事项与最佳实践

  1. 数据准备:确保输入的CDF数据是单调递增的,且 cdf 值范围从0到1。任何违反这些条件的数据都可能导致插值错误或不合理的抽样结果。
  2. 插值方法的选择
    • numpy.interp (线性插值):简单、高效,适用于对精度要求不高或数据点足够密集的情况。它不会生成超出原始 x 范围的值。
    • scipy.interpolate.interp1d:提供更灵活的插值 kind 选项。
      • kind='linear':与 np.interp 行为类似,但提供更多控制。
      • kind='cubic' (三次样条):生成更平滑的曲线,样本分布也更连续,尤其适用于数据点较少但需要平滑过渡的场景。然而,样条插值在某些情况下可能会引入轻微的“过冲”或“欠冲”,导致生成的样本值略微超出原始 x 的最小/最大范围(尽管通过 fill_value 可以有效控制)。
  3. fill_value 参数:在使用 interp1d 时,务必设置 bounds_error=False 并合理配置 fill_value。将其设置为CDF的最小和最大 x 值是一个稳健的选择,可以确保所有均匀随机数(包括0和1)都能得到有效的映射,并且样本不会超出合理的物理范围。
  4. 样本量:生成足够多的样本(例如10,000或更多)才能更好地反映底层分布的特征。样本量过小可能无法捕捉到分布的细节。
  5. 计算效率:对于大规模抽样,numpy.interp 通常比 scipy.interpolate.interp1d 稍快,因为它是一个C实现的简单线性插值。如果对性能有极高要求且仅需线性插值,np.interp 是首选。

总结

本文详细阐述了从自定义经验CDF进行抽样的两种主要方法:直接阶梯式插值和通过平滑函数(如样条)插值。numpy.interp 适用于快速、直接的线性插值抽样,生成的样本严格在原始 x 范围内。scipy.interpolate.interp1d 则提供了更丰富的插值选项,特别是样条插值,能够生成更平滑、更连续的样本分布,适用于对分布平滑性有更高要求的场景。在实际应用中,应根据数据特性、对样本平滑度的要求以及计算效率等因素,选择最合适的抽样策略。

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

407

2023.08.14

页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

407

2023.08.14

Python 自然语言处理(NLP)基础与实战
Python 自然语言处理(NLP)基础与实战

本专题系统讲解 Python 在自然语言处理(NLP)领域的基础方法与实战应用,涵盖文本预处理(分词、去停用词)、词性标注、命名实体识别、关键词提取、情感分析,以及常用 NLP 库(NLTK、spaCy)的核心用法。通过真实文本案例,帮助学习者掌握 使用 Python 进行文本分析与语言数据处理的完整流程,适用于内容分析、舆情监测与智能文本应用场景。

10

2026.01.27

拼多多赚钱的5种方法 拼多多赚钱的5种方法
拼多多赚钱的5种方法 拼多多赚钱的5种方法

在拼多多上赚钱主要可以通过无货源模式一件代发、精细化运营特色店铺、参与官方高流量活动、利用拼团机制社交裂变,以及成为多多进宝推广员这5种方法实现。核心策略在于通过低成本、高效率的供应链管理与营销,利用平台社交电商红利实现盈利。

109

2026.01.26

edge浏览器怎样设置主页 edge浏览器自定义设置教程
edge浏览器怎样设置主页 edge浏览器自定义设置教程

在Edge浏览器中设置主页,请依次点击右上角“...”图标 > 设置 > 开始、主页和新建标签页。在“Microsoft Edge 启动时”选择“打开以下页面”,点击“添加新页面”并输入网址。若要使用主页按钮,需在“外观”设置中开启“显示主页按钮”并设定网址。

16

2026.01.26

苹果官方查询网站 苹果手机正品激活查询入口
苹果官方查询网站 苹果手机正品激活查询入口

苹果官方查询网站主要通过 checkcoverage.apple.com/cn/zh/ 进行,可用于查询序列号(SN)对应的保修状态、激活日期及技术支持服务。此外,查找丢失设备请使用 iCloud.com/find,购买信息与物流可访问 Apple (中国大陆) 订单状态页面。

138

2026.01.26

npd人格什么意思 npd人格有什么特征
npd人格什么意思 npd人格有什么特征

NPD(Narcissistic Personality Disorder)即自恋型人格障碍,是一种心理健康问题,特点是极度夸大自我重要性、需要过度赞美与关注,同时极度缺乏共情能力,背后常掩藏着低自尊和不安全感,影响人际关系、工作和生活,通常在青少年时期开始显现,需由专业人士诊断。

7

2026.01.26

windows安全中心怎么关闭 windows安全中心怎么执行操作
windows安全中心怎么关闭 windows安全中心怎么执行操作

关闭Windows安全中心(Windows Defender)可通过系统设置暂时关闭,或使用组策略/注册表永久关闭。最简单的方法是:进入设置 > 隐私和安全性 > Windows安全中心 > 病毒和威胁防护 > 管理设置,将实时保护等选项关闭。

6

2026.01.26

2026年春运抢票攻略大全 春运抢票攻略教你三招手【技巧】
2026年春运抢票攻略大全 春运抢票攻略教你三招手【技巧】

铁路12306提供起售时间查询、起售提醒、购票预填、候补购票及误购限时免费退票五项服务,并强调官方渠道唯一性与信息安全。

122

2026.01.26

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 22.3万人学习

Django 教程
Django 教程

共28课时 | 3.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号