对于排序算法,这些年用到的也不多,基本处于拿来用的状态,一直没有花时间稍微深入了解。最近下定决心自己动手写写,加深理解。查看了不少资料,有不少分析的很到位,帮助快速理解,在此感谢!
1、概念理解及实现
package com.demo.algorithm.sort;
/**
* 排序算法合集
* @author sheungxin
*
*/
public class NumberSort {
/**
* 插入排序-直接插入排序
* 工作原理:构建有序序列,对于未排序的数据,在已排序序列中从后向前扫描,找到相应位置并插入
* 参考:http://blog.csdn.net/morewindows/article/details/6665714
* @param array
* @param asc 0:升序 1:降序
*/
public static void straightInsertSort(int[] array,int asc){
int tmp,n;
//从第二位元素开始,第一位认为已被排序
for(int m=1;m(<)新元素,将该新元素向后移一位
for(n=m-1;n>=0&&(asc==1&&tmp>array[n]||asc==0&&tmp=)新元素或者扫描到首位时结束,将该元素插入在结束位置后面
array[n+1]=tmp;
}
display(array);
}
/**
* 插入排序-希尔排序,实质就是分组排序,又称缩小增量排序
* 工作原理:先将整个待排序元素序列分割成若干个子序列(由相隔某个“增量”元素组成)分别进行直接插入排序,
* 然后依次缩减增量再进行排序,待整个序列中元素基本有序(增量足够小)时,再进行一次全元素直接插入排序。
* 优势:直接插入排序在元素基本有序的情况下,效率最高
* 参考:http://blog.csdn.net/morewindows/article/details/6668714
* @param array
* @param asc 0:升序 1:降序
*/
public static void shellSort(int[] array,int asc){
int len=array.length;
//依次缩减增量,直到增量为1
for(int gap=len/2;gap>0;gap/=2){
//根据步长把待排序元素分为gap组
for(int i=0;i(<)新元素,将该新元素向后移一位
while(k>=0&&(asc==1&&tmp>array[k]||asc==0&&tmp=)新元素或者扫描到首位时结束,将该元素插入在结束位置后面
array[k+gap]=tmp;
}
}
}
display(array);
}
/**
* 选择排序:简单选择排序
* 原理:从无序区中选择一个最小的元素之间放到有序区的最后
* 参考:http://blog.csdn.net/morewindows/article/details/6671824
* @param array
* @param asc 0:升序 1:降序
*/
public static void selectSort(int[] array,int asc){
int tmp,ix;
for(int i=0;iarray[j])||(asc==1&&array[ix]=0;i--){
buildHeap(array, array.length, i, asc);
}
//使用堆根节点构建有序序列
for(int i=array.length-1;i>=1;i--){
//依次把根节点向后交换构建有序序列
swapArray(array, 0, i);
//根节点交换位置后,从0,i-1重新构建堆
buildHeap(array, i, 0, asc);
}
display(array);
}
/**
* 构建二叉堆
* @param array 二叉堆数组
* @param heapSize 二叉堆大小
* @param index 当前父节点位置
* @param asc 0:升序 1:降序
*/
private static void buildHeap(int[] array,int heapSize,int index,int asc){
//比较父节点、左右叶子节点,找出最大或最小节点位置
int left = index * 2 + 1;
int right = index * 2 + 2;
int ix=index;
if(leftarray[left]||asc==0&&array[index]array[right]||asc==0&&array[ix]array[j])||(asc==1&&array[j-1]array[n])
||(asc==1&&array[m]=tmp||asc==1&&array[j]<=tmp)){
j--;
}
//把右边找到的节点放到左边的空位
array[i]=array[j];
//寻找右边大于(小于)基准数的节点位置
while(i=tmp)){
i++;
}
//把左边找到的节点放到右边的空位
array[j]=array[i];
}
//把基准数放在中间节点
array[i]=tmp;
//对中间点左边的元素重复上述操作
quickSort(array, l, i-1, asc);
//对中间点右边的元素重复上述操作
quickSort(array, i+1, r, asc);
}
display(array);
}
/**
* 归并排序:将两个(或两个以上)有序表合并成一个新的有序表
* 原理:将序列不断拆分,再反向两两合并形成有序序列
* 时间复杂度:O(nlogn)
* 参考:http://www.cnblogs.com/jingmoxukong/p/4308823.html
* @param array
* @param l 左指针
* @param r 右指针
* @param asc 0:升序 1:降序
*/
public static void mergeSort(int[] array,int l,int r,int asc){
//找出中间点,左右拆分为两个序列
int m=(l+r)/2;
if(larray[j]){
tmp[k++]=array[i++];
}else{
tmp[k++]=array[j++];
}
}
//把左边剩余的数移到数组中
while(i<=m){
tmp[k++]=array[i++];
}
//把右边剩余的数移到数组中
while(j<=r){
tmp[k++]=array[j++];
}
//把临时数组中的数覆盖原数组,形成有序集合
for(k=0;k=0;i--){
j=array[i]/((Double)Math.pow(10, d-1)).intValue()%10;//d位上的数据
tmp[count[j]-1]=array[i];//count[j]-1为第J个桶右边界的下标
count[j]--;//桶j装入数据索引减1
}
//按照桶中数据顺序放入原数据序列中
for(i=0;i2、排序算法对比图

引用
http://blog.csdn.net/hguisu/article/details/7776068
MD5校验和计算小程序(C)
C编写,实现字符串摘要、文件摘要两个功能。里面主要包含3个文件: Md5.cpp、Md5.h、Main.cpp。其中Md5.cpp是算法的代码,里的代码大多是从 rfc-1321 里copy过来的;Main.cpp是主程序。
下载
3、选择排序算法准则
影响排序的因素有很多,平均时间复杂度低的算法并不一定就是最优的。相反,有时平均时间复杂度高的算法可能更适合某些特殊情况。同时,选择算法时还得考虑它的可读性,以利于软件的维护。一般而言,需要考虑的因素有以下四点:
1)、待排序的记录数目n的大小;
2)、记录本身数据量的大小,也就是记录中除关键字外的其他信息量的大小;
3)、关键字的结构及其分布情况;
4)、对排序稳定性的要求。
设待排序元素的个数为n.
1)、当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序序。
a、快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;
b、堆排序 :如果内存空间允许且要求稳定性的;
c、归并排序:它有一定数量的数据移动,所以我们可能过与插入排序组合,先获得一定长度的序列,然后再合并,在效率上将有所提高。
2)、当n较大,内存空间允许,且要求稳定性 =》归并排序
3)、当n较小,可采用直接插入或直接选择排序。
a、直接插入排序:当元素分布有序,直接插入排序将大大减少比较次数和移动记录的次数;
b、直接选择排序 :元素分布有序,如果不要求稳定性,选择直接选择排序
4)、一般不使用或不直接使用传统的冒泡排序。
5)、基数排序:它是一种稳定的排序算法,但有一定的局限性:
a、关键字可分解;
b、记录的关键字位数较少,如果密集更好;
c、如果是数字时,最好是无符号的,否则将增加相应的映射复杂度,可先将其正负分开排序。
引用
http://blog.csdn.net/hguisu/article/details/7776068









