java中的几种锁:synchronized,reentrantlock,reentrantreadwritelock已基本可以满足编程需求,但其粒度都太大,同一时刻只有一个线程能进入同步块,这对于某些高并发的场景并不适用。
下面来提供几个更细的粒度锁:
1. 分段锁
借鉴concurrentHashMap的分段思想,先生成一定数量的锁,具体使用的时候再根据key来返回对应的lock。这是几个实现里最简单,性能最高,也是最终被采用的锁策略,代码如下:
/** * 分段锁,系统提供一定数量的原始锁,根据传入对象的哈希值获取对应的锁并加锁 * 注意:要锁的对象的哈希值如果发生改变,有可能导致锁无法成功释放!!! */ public class SegmentLock{ private Integer segments = 16;//默认分段数量 private final HashMap lockMap = new HashMap<>(); public SegmentLock() { init(null, false); } public SegmentLock(Integer counts, boolean fair) { init(counts, fair); } private void init(Integer counts, boolean fair) { if (counts != null) { segments = counts; } for (int i = 0; i < segments; i++) { lockMap.put(i, new ReentrantLock(fair)); } } public void lock(T key) { ReentrantLock lock = lockMap.get(key.hashCode() % segments); lock.lock(); } public void unlock(T key) { ReentrantLock lock = lockMap.get(key.hashCode() % segments); lock.unlock(); } }
2. 哈希锁
上述分段锁的基础上发展起来的第二种锁策略,目的是实现真正意义上的细粒度锁。每个哈希值不同的对象都能获得自己独立的锁。在测试中,在被锁住的代码执行速度飞快的情况下,效率比分段锁慢 30% 左右。如果有长耗时操作,感觉表现应该会更好。代码如下:
public class HashLock{ private boolean isFair = false; private final SegmentLock segmentLock = new SegmentLock<>();//分段锁 private final ConcurrentHashMap lockMap = new ConcurrentHashMap<>(); public HashLock() { } public HashLock(boolean fair) { isFair = fair; } public void lock(T key) { LockInfo lockInfo; segmentLock.lock(key); try { lockInfo = lockMap.get(key); if (lockInfo == null) { lockInfo = new LockInfo(isFair); lockMap.put(key, lockInfo); } else { lockInfo.count.incrementAndGet(); } } finally { segmentLock.unlock(key); } lockInfo.lock.lock(); } public void unlock(T key) { LockInfo lockInfo = lockMap.get(key); if (lockInfo.count.get() == 1) { segmentLock.lock(key); try { if (lockInfo.count.get() == 1) { lockMap.remove(key); } } finally { segmentLock.unlock(key); } } lockInfo.count.decrementAndGet(); lockInfo.unlock(); } private static class LockInfo { public ReentrantLock lock; public AtomicInteger count = new AtomicInteger(1); private LockInfo(boolean fair) { this.lock = new ReentrantLock(fair); } public void lock() { this.lock.lock(); } public void unlock() { this.lock.unlock(); } } }
3. 弱引用锁
哈希锁因为引入的分段锁来保证锁创建和销毁的同步,总感觉有点瑕疵,所以写了第三个锁来寻求更好的性能和更细粒度的锁。这个锁的思想是借助java的弱引用来创建锁,把锁的销毁交给jvm的垃圾回收,来避免额外的消耗。
立即学习“Java免费学习笔记(深入)”;
有点遗憾的是因为使用了ConcurrentHashMap作为锁的容器,所以没能真正意义上的摆脱分段锁。这个锁的性能比 HashLock 快10% 左右。锁代码:
/** * 弱引用锁,为每个独立的哈希值提供独立的锁功能 */ public class WeakHashLock{ private ConcurrentHashMap > lockMap = new ConcurrentHashMap<>(); private ReferenceQueue queue = new ReferenceQueue<>(); public ReentrantLock get(T key) { if (lockMap.size() > 1000) { clearEmptyRef(); } WeakReference lockRef = lockMap.get(key); ReentrantLock lock = (lockRef == null ? null : lockRef.get()); while (lock == null) { lockMap.putIfAbsent(key, new WeakLockRef<>(new ReentrantLock(), queue, key)); lockRef = lockMap.get(key); lock = (lockRef == null ? null : lockRef.get()); if (lock != null) { return lock; } clearEmptyRef(); } return lock; } @SuppressWarnings("unchecked") private void clearEmptyRef() { Reference extends ReentrantLock> ref; while ((ref = queue.poll()) != null) { WeakLockRef weakLockRef = (WeakLockRef ) ref; lockMap.remove(weakLockRef.key); } } private static final class WeakLockRef extends WeakReference { final T key; private WeakLockRef(K referent, ReferenceQueue super K> q, T key) { super(referent, q); this.key = key; } } }
4.基于KEY(主键)的互斥锁
KeyLock是对所需处理的数据的KEY(主键)进行加锁,只要是对不同key操作,其就可以并行处理,大大提高了线程的并行度
KeyLock有如下几个特性:
1、细粒度,高并行性
2、可重入
3、公平锁
4、加锁开销比ReentrantLock大,适用于处理耗时长、key范围大的场景
public class KeyLock{ // 保存所有锁定的KEY及其信号量 private final ConcurrentMap map = new ConcurrentHashMap (); // 保存每个线程锁定的KEY及其锁定计数 private final ThreadLocal
KeyLock使用示例:
private int[] accounts; private KeyLocklock = new KeyLock (); public boolean transfer(int from, int to, int money) { Integer[] keys = new Integer[] {from, to}; Arrays.sort(keys); //对多个key进行排序,保证锁定顺序防止死锁 lock.lock(keys); try { //处理不同的from和to的线程都可进入此同步块 if (accounts[from] < money) return false; accounts[from] -= money; accounts[to] += money; return true; } finally { lock.unlock(keys); } }
测试代码如下:
//场景:多线程并发转账
public class Test {
private final int[] account; // 账户数组,其索引为账户ID,内容为金额
public Test(int count, int money) {
account = new int[count];
Arrays.fill(account, money);
}
boolean transfer(int from, int to, int money) {
if (account[from] < money)
return false;
account[from] -= money;
try {
Thread.sleep(2);
} catch (Exception e) {
}
account[to] += money;
return true;
}
int getAmount() {
int result = 0;
for (int m : account)
result += m;
return result;
}
public static void main(String[] args) throws Exception {
int count = 100; //账户个数
int money = 10000; //账户初始金额
int threadNum = 8; //转账线程数
int number = 10000; //转账次数
int maxMoney = 1000; //随机转账最大金额
Test test = new Test(count, money);
//不加锁
// Runner runner = test.new NonLockRunner(maxMoney, number);
//加synchronized锁
// Runner runner = test.new SynchronizedRunner(maxMoney, number);
//加ReentrantLock锁
// Runner runner = test.new ReentrantLockRunner(maxMoney, number);
//加KeyLock锁
Runner runner = test.new KeyLockRunner(maxMoney, number);
Thread[] threads = new Thread[threadNum];
for (int i = 0; i < threadNum; i++)
threads[i] = new Thread(runner, "thread-" + i);
long begin = System.currentTimeMillis();
for (Thread t : threads)
t.start();
for (Thread t : threads)
t.join();
long time = System.currentTimeMillis() - begin;
System.out.println("类型:" + runner.getClass().getSimpleName());
System.out.printf("耗时:%dms\n", time);
System.out.printf("初始总金额:%d\n", count * money);
System.out.printf("终止总金额:%d\n", test.getAmount());
}
// 转账任务
abstract class Runner implements Runnable {
final int maxMoney;
final int number;
private final Random random = new Random();
private final AtomicInteger count = new AtomicInteger();
Runner(int maxMoney, int number) {
this.maxMoney = maxMoney;
this.number = number;
}
@Override
public void run() {
while(count.getAndIncrement() < number) {
int from = random.nextInt(account.length);
int to;
while ((to = random.nextInt(account.length)) == from)
;
int money = random.nextInt(maxMoney);
doTransfer(from, to, money);
}
}
abstract void doTransfer(int from, int to, int money);
}
// 不加锁的转账
class NonLockRunner extends Runner {
NonLockRunner(int maxMoney, int number) {
super(maxMoney, number);
}
@Override
void doTransfer(int from, int to, int money) {
transfer(from, to, money);
}
}
// synchronized的转账
class SynchronizedRunner extends Runner {
SynchronizedRunner(int maxMoney, int number) {
super(maxMoney, number);
}
@Override
synchronized void doTransfer(int from, int to, int money) {
transfer(from, to, money);
}
}
// ReentrantLock的转账
class ReentrantLockRunner extends Runner {
private final ReentrantLock lock = new ReentrantLock();
ReentrantLockRunner(int maxMoney, int number) {
super(maxMoney, number);
}
@Override
void doTransfer(int from, int to, int money) {
lock.lock();
try {
transfer(from, to, money);
} finally {
lock.unlock();
}
}
}
// KeyLock的转账
class KeyLockRunner extends Runner {
private final KeyLock lock = new KeyLock();
KeyLockRunner(int maxMoney, int number) {
super(maxMoney, number);
}
@Override
void doTransfer(int from, int to, int money) {
Integer[] keys = new Integer[] {from, to};
Arrays.sort(keys);
lock.lock(keys);
try {
transfer(from, to, money);
} finally {
lock.unlock(keys);
}
}
}
} 测试结果:
(8线程对100个账户随机转账总共10000次):
类型:NonLockRunner(不加锁)
耗时:2482ms
初始总金额:1000000
终止总金额:998906(无法保证原子性)
类型:SynchronizedRunner(加synchronized锁)
耗时:20872ms
初始总金额:1000000
终止总金额:1000000
类型:ReentrantLockRunner(加ReentrantLock锁)
耗时:21588ms
初始总金额:1000000
终止总金额:1000000
类型:KeyLockRunner(加KeyLock锁)
耗时:2831ms
初始总金额:1000000
终止总金额:1000000











