0

0

Java中的Fork/Join框架及调用方法

WBOY

WBOY

发布时间:2023-05-08 11:10:07

|

1896人浏览过

|

来源于亿速云

转载

    什么是ForkJoin?

    forkjoin 从字面上看fork是分岔的意思,join是结合的意思,我们可以理解为将大任务拆分成小任务进行计算求解,最后将小任务的结果进行结合求出大任务的解,这些裂变出来的小任务,我们就可以交给不同的线程去进行计算,这也就是分布式计算的一种思想。这与大数据中的分布式离线计算mapreduce类似,对forkjoin最经典的一个应用就是java8中的stream,我们知道stream分为串行流和并行流,其中并行流parallelstream就是依赖于forkjoin来实现并行处理的。

    下面我们一起来看一下最为核心的ForkJoinTaskForkJoinPool

    ForkJoinTask 任务

    ForkJoinTask本身的依赖关系并不复杂,它与异步任务计算FutureTask一样均实现了Future接口

    Java中的ForkJoin是什么及怎么调用

    下面我们就ForkJoinTask的核心源码来研究一下,该任务是如何通过分治法进行计算。

    立即学习Java免费学习笔记(深入)”;

    ForkJoinTask最核心的莫过于fork()和join()方法了。

    fork()

    • 判断当前线程是不是ForkJoinWorkerThread线程

      • 是 直接将当前线程push到工作队列中

      • 否 调用ForkJoinPool 的externalPush方法

    ForkJoinPool构建了一个静态的common对象,这里调用的就是commonexternalPush()

    join()

    • 调用doJoin()方法,等待线程执行完成

        public final ForkJoinTask fork() {
            Thread t;
            if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)
                ((ForkJoinWorkerThread)t).workQueue.push(this);
            else
                ForkJoinPool.common.externalPush(this);
            return this;
        }
    
        public final V join() {
            int s;
            if ((s = doJoin() & DONE_MASK) != NORMAL)
                reportException(s);
            return getRawResult();
        }
    
        private int doJoin() {
            int s; Thread t; ForkJoinWorkerThread wt; ForkJoinPool.WorkQueue w;
            return (s = status) < 0 ? s :
                ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ?
                (w = (wt = (ForkJoinWorkerThread)t).workQueue).
                tryUnpush(this) && (s = doExec()) < 0 ? s :
                wt.pool.awaitJoin(w, this, 0L) :
                externalAwaitDone();
        }
    
    	// 获取结果的方法由子类实现
    	public abstract V getRawResult();	

    RecursiveTask 是ForkJoinTask的一个子类主要对获取结果的方法进行了实现,通过泛型约束结果。我们如果需要自己创建任务,仍需要实现RecursiveTask,并去编写最为核心的计算方法compute()。

    public abstract class RecursiveTask extends ForkJoinTask {
        private static final long serialVersionUID = 5232453952276485270L;
    
        V result;
    
        protected abstract V compute();
    
        public final V getRawResult() {
            return result;
        }
    
        protected final void setRawResult(V value) {
            result = value;
        }
        protected final boolean exec() {
            result = compute();
            return true;
        }
    
    }

    ForkJoinPool 线程池

    ForkJoinTask 中许多功能都依赖于ForkJoinPool线程池,所以说ForkJoinTask运行离不开ForkJoinPool,ForkJoinPool与ThreadPoolExecutor有许多相似之处,他是专门用来执行ForkJoinTask任务的线程池,我之前也有文章对线程池技术进行了介绍,感兴趣的可以进行阅读——从java源码分析线程池(池化技术)的实现原理

    ForkJoinPool与ThreadPoolExecutor的继承关系几乎是相同的,他们相当于兄弟关系。

    Java中的ForkJoin是什么及怎么调用

    Delphi 内存管理指导性内容 PDF版
    Delphi 内存管理指导性内容 PDF版

    Delphi 内存管理方面的指导性内容,摘录做成了PDF格式的电子书,本书是从一本Delphi书籍中摘录的内存管理那一章内容,不牵扯其它方面的内容,相对具有针对性。内容涉及遍历内存块、共享内存管理器、第三方内存管理器、Delphi内存管理实现框架、用户调用例程的实现等内容。

    下载

    工作窃取算法

    ForkJoinPool中采取工作窃取算法,如果每次fork子任务如果都去创建新线程去处理的话,对系统资源的开销是巨大的,所以必须采取线程池。一般的线程池只有一个任务队列,但是对于ForkJoinPool来说,由于同一个任务Fork出的各个子任务是平行关系,为了提高效率,减少线程的竞争,需要将这些平行的任务放到不同的队列中,由于线程处理不同任务的速度不同,这样就可能存在某个线程先执行完了自己队列中的任务,这时为了提升效率,就可以让该线程去“窃取”其它任务队列中的任务,这就是所谓的“工作窃取算法”。

    对于一般的队列来说,入队元素都是在队尾,出队元素在队首,要满足“工作窃取”的需求,任务队列应该支持从“队尾”出队元素,这样可以减少与其它工作线程的冲突(因为其它工作线程会从队首获取自己任务队列中的任务),这时就需要使用双端阻塞队列来解决。

    构造方法

    首先我们来看ForkJoinPool线程池的构造方法,他为我们提供了三种形式的构造,其中最为复杂的是四个入参的构造,下面我们看一下它四个入参都代表什么?

    • int parallelism 可并行级别(不代表最多存在的线程数量)

    • ForkJoinWorkerThreadFactory factory 线程创建工厂

    • UncaughtExceptionHandler handler 异常捕获处理器

    • boolean asyncMode 先进先出的工作模式 或者 后进先出的工作模式

        public ForkJoinPool() {
            this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
                 defaultForkJoinWorkerThreadFactory, null, false);
        }
    
    	public ForkJoinPool(int parallelism) {
            this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
        }
    
    	public ForkJoinPool(int parallelism,
                            ForkJoinWorkerThreadFactory factory,
                            UncaughtExceptionHandler handler,
                            boolean asyncMode) {
            this(checkParallelism(parallelism),
                 checkFactory(factory),
                 handler,
                 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
                 "ForkJoinPool-" + nextPoolId() + "-worker-");
            checkPermission();
        }

    提交方法

    下面我们看一下提交任务的方法:

    externalPush这个方法我们很眼熟,它正是在fork的时候如果当前线程不是ForkJoinWorkerThread,新提交任务也是会通过这个方法去执行任务。由此可见,fork就是新建一个子任务进行提交。

    externalSubmit是最为核心的一个方法,它可以首次向池提交第一个任务,并执行二次初始化。它还可以检测外部线程的首次提交,并创建一个新的共享队列。

    signalWork(ws, q)是发送工作信号,让工作队列进行运转。

        public ForkJoinTask submit(Runnable task) {
            if (task == null)
                throw new NullPointerException();
            ForkJoinTask job;
            if (task instanceof ForkJoinTask) // avoid re-wrap
                job = (ForkJoinTask) task;
            else
                job = new ForkJoinTask.AdaptedRunnableAction(task);
            externalPush(job);
            return job;
        }
    
        final void externalPush(ForkJoinTask task) {
            WorkQueue[] ws; WorkQueue q; int m;
            int r = ThreadLocalRandom.getProbe();
            int rs = runState;
            if ((ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
                (q = ws[m & r & SQMASK]) != null && r != 0 && rs > 0 &&
                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
                ForkJoinTask[] a; int am, n, s;
                if ((a = q.array) != null &&
                    (am = a.length - 1) > (n = (s = q.top) - q.base)) {
                    int j = ((am & s) << ASHIFT) + ABASE;
                    U.putOrderedObject(a, j, task);
                    U.putOrderedInt(q, QTOP, s + 1);
                    U.putOrderedInt(q, QLOCK, 0);
                    if (n <= 1)
                        signalWork(ws, q);
                    return;
                }
                U.compareAndSwapInt(q, QLOCK, 1, 0);
            }
            externalSubmit(task);
        }
    
        private void externalSubmit(ForkJoinTask task) {
            int r;                                    // initialize caller's probe
            if ((r = ThreadLocalRandom.getProbe()) == 0) {
                ThreadLocalRandom.localInit();
                r = ThreadLocalRandom.getProbe();
            }
            for (;;) {
                WorkQueue[] ws; WorkQueue q; int rs, m, k;
                boolean move = false;
                if ((rs = runState) < 0) {
                    tryTerminate(false, false);     // help terminate
                    throw new RejectedExecutionException();
                }
                else if ((rs & STARTED) == 0 ||     // initialize
                         ((ws = workQueues) == null || (m = ws.length - 1) < 0)) {
                    int ns = 0;
                    rs = lockRunState();
                    try {
                        if ((rs & STARTED) == 0) {
                            U.compareAndSwapObject(this, STEALCOUNTER, null,
                                                   new AtomicLong());
                            // create workQueues array with size a power of two
                            int p = config & SMASK; // ensure at least 2 slots
                            int n = (p > 1) ? p - 1 : 1;
                            n |= n >>> 1; n |= n >>> 2;  n |= n >>> 4;
                            n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
                            workQueues = new WorkQueue[n];
                            ns = STARTED;
                        }
                    } finally {
                        unlockRunState(rs, (rs & ~RSLOCK) | ns);
                    }
                }
                else if ((q = ws[k = r & m & SQMASK]) != null) {
                    if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
                        ForkJoinTask[] a = q.array;
                        int s = q.top;
                        boolean submitted = false; // initial submission or resizing
                        try {                      // locked version of push
                            if ((a != null && a.length > s + 1 - q.base) ||
                                (a = q.growArray()) != null) {
                                int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
                                U.putOrderedObject(a, j, task);
                                U.putOrderedInt(q, QTOP, s + 1);
                                submitted = true;
                            }
                        } finally {
                            U.compareAndSwapInt(q, QLOCK, 1, 0);
                        }
                        if (submitted) {
                            signalWork(ws, q);
                            return;
                        }
                    }
                    move = true;                   // move on failure
                }
                else if (((rs = runState) & RSLOCK) == 0) { // create new queue
                    q = new WorkQueue(this, null);
                    q.hint = r;
                    q.config = k | SHARED_QUEUE;
                    q.scanState = INACTIVE;
                    rs = lockRunState();           // publish index
                    if (rs > 0 &&  (ws = workQueues) != null &&
                        k < ws.length && ws[k] == null)
                        ws[k] = q;                 // else terminated
                    unlockRunState(rs, rs & ~RSLOCK);
                }
                else
                    move = true;                   // move if busy
                if (move)
                    r = ThreadLocalRandom.advanceProbe(r);
            }
        }

    创建工人(线程)

    提交任务后,通过signalWork(ws, q)方法,发送工作信号,当符合没有执行完毕,且没有出现异常的条件下,循环执行任务,根据控制变量尝试添加工人(线程),通过线程工厂,生成线程,并且启动线程,也控制着工人(线程)的下岗。

        final void signalWork(WorkQueue[] ws, WorkQueue q) {
            long c; int sp, i; WorkQueue v; Thread p;
            while ((c = ctl) < 0L) {                       // too few active
                if ((sp = (int)c) == 0) {                  // no idle workers
                    if ((c & ADD_WORKER) != 0L)            // too few workers
                        tryAddWorker(c);
                    break;
                }
                if (ws == null)                            // unstarted/terminated
                    break;
                if (ws.length <= (i = sp & SMASK))         // terminated
                    break;
                if ((v = ws[i]) == null)                   // terminating
                    break;
                int vs = (sp + SS_SEQ) & ~INACTIVE;        // next scanState
                int d = sp - v.scanState;                  // screen CAS
                long nc = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & v.stackPred);
                if (d == 0 && U.compareAndSwapLong(this, CTL, c, nc)) {
                    v.scanState = vs;                      // activate v
                    if ((p = v.parker) != null)
                        U.unpark(p);
                    break;
                }
                if (q != null && q.base == q.top)          // no more work
                    break;
            }
        }
    
        private void tryAddWorker(long c) {
            boolean add = false;
            do {
                long nc = ((AC_MASK & (c + AC_UNIT)) |
                           (TC_MASK & (c + TC_UNIT)));
                if (ctl == c) {
                    int rs, stop;                 // check if terminating
                    if ((stop = (rs = lockRunState()) & STOP) == 0)
                        add = U.compareAndSwapLong(this, CTL, c, nc);
                    unlockRunState(rs, rs & ~RSLOCK);
                    if (stop != 0)
                        break;
                    if (add) {
                        createWorker();
                        break;
                    }
                }
            } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
        }
    
        private boolean createWorker() {
            ForkJoinWorkerThreadFactory fac = factory;
            Throwable ex = null;
            ForkJoinWorkerThread wt = null;
            try {
                if (fac != null && (wt = fac.newThread(this)) != null) {
                    wt.start();
                    return true;
                }
            } catch (Throwable rex) {
                ex = rex;
            }
            deregisterWorker(wt, ex);
            return false;
        }
    
       final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
            WorkQueue w = null;
            if (wt != null && (w = wt.workQueue) != null) {
                WorkQueue[] ws;                           // remove index from array
                int idx = w.config & SMASK;
                int rs = lockRunState();
                if ((ws = workQueues) != null && ws.length > idx && ws[idx] == w)
                    ws[idx] = null;
                unlockRunState(rs, rs & ~RSLOCK);
            }
            long c;                                       // decrement counts
            do {} while (!U.compareAndSwapLong
                         (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
                                               (TC_MASK & (c - TC_UNIT)) |
                                               (SP_MASK & c))));
            if (w != null) {
                w.qlock = -1;                             // ensure set
                w.transferStealCount(this);
                w.cancelAll();                            // cancel remaining tasks
            }
            for (;;) {                                    // possibly replace
                WorkQueue[] ws; int m, sp;
                if (tryTerminate(false, false) || w == null || w.array == null ||
                    (runState & STOP) != 0 || (ws = workQueues) == null ||
                    (m = ws.length - 1) < 0)              // already terminating
                    break;
                if ((sp = (int)(c = ctl)) != 0) {         // wake up replacement
                    if (tryRelease(c, ws[sp & m], AC_UNIT))
                        break;
                }
                else if (ex != null && (c & ADD_WORKER) != 0L) {
                    tryAddWorker(c);                      // create replacement
                    break;
                }
                else                                      // don't need replacement
                    break;
            }
            if (ex == null)                               // help clean on way out
                ForkJoinTask.helpExpungeStaleExceptions();
            else                                          // rethrow
                ForkJoinTask.rethrow(ex);
        }
    
        public static interface ForkJoinWorkerThreadFactory {
            public ForkJoinWorkerThread newThread(ForkJoinPool pool);
        }
        static final class DefaultForkJoinWorkerThreadFactory
            implements ForkJoinWorkerThreadFactory {
            public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
                return new ForkJoinWorkerThread(pool);
            }
        }
        protected ForkJoinWorkerThread(ForkJoinPool pool) {
            // Use a placeholder until a useful name can be set in registerWorker
            super("aForkJoinWorkerThread");
            this.pool = pool;
            this.workQueue = pool.registerWorker(this);
        }
    
        final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
            UncaughtExceptionHandler handler;
            wt.setDaemon(true);                           // configure thread
            if ((handler = ueh) != null)
                wt.setUncaughtExceptionHandler(handler);
            WorkQueue w = new WorkQueue(this, wt);
            int i = 0;                                    // assign a pool index
            int mode = config & MODE_MASK;
            int rs = lockRunState();
            try {
                WorkQueue[] ws; int n;                    // skip if no array
                if ((ws = workQueues) != null && (n = ws.length) > 0) {
                    int s = indexSeed += SEED_INCREMENT;  // unlikely to collide
                    int m = n - 1;
                    i = ((s << 1) | 1) & m;               // odd-numbered indices
                    if (ws[i] != null) {                  // collision
                        int probes = 0;                   // step by approx half n
                        int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
                        while (ws[i = (i + step) & m] != null) {
                            if (++probes >= n) {
                                workQueues = ws = Arrays.copyOf(ws, n <<= 1);
                                m = n - 1;
                                probes = 0;
                            }
                        }
                    }
                    w.hint = s;                           // use as random seed
                    w.config = i | mode;
                    w.scanState = i;                      // publication fence
                    ws[i] = w;
                }
            } finally {
                unlockRunState(rs, rs & ~RSLOCK);
            }
            wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
            return w;
        }

    例:ForkJoinTask实现归并排序

    这里我们就用经典的归并排序为例,构建一个我们自己的ForkJoinTask,按照归并排序的思路,重写其核心的compute()方法,通过ForkJoinPool.submit(task)提交任务,通过get()同步获取任务执行结果。

    package com.zhj.interview;
    
    import java.util.*;
    import java.util.concurrent.ExecutionException;
    import java.util.concurrent.ForkJoinPool;
    import java.util.concurrent.RecursiveTask;
    
    public class Test16 {
    
        public static void main(String[] args) throws ExecutionException, InterruptedException {
            int[] bigArr = new int[10000000];
            for (int i = 0; i < 10000000; i++) {
                bigArr[i] = (int) (Math.random() * 10000000);
            }
            ForkJoinPool forkJoinPool = new ForkJoinPool();
            MyForkJoinTask task = new MyForkJoinTask(bigArr);
            long start = System.currentTimeMillis();
            forkJoinPool.submit(task).get();
            long end = System.currentTimeMillis();
            System.out.println("耗时:" + (end-start));
    	}
    
    }
    class MyForkJoinTask extends RecursiveTask {
    
        private int source[];
    
        public MyForkJoinTask(int source[]) {
            if (source == null) {
                throw new RuntimeException("参数有误!!!");
            }
            this.source = source;
        }
    
        @Override
        protected int[] compute() {
            int l = source.length;
            if (l < 2) {
                return Arrays.copyOf(source, l);
            }
            if (l == 2) {
                if (source[0] > source[1]) {
                    int[] tar = new int[2];
                    tar[0] = source[1];
                    tar[1] = source[0];
                    return tar;
                } else {
                    return Arrays.copyOf(source, l);
                }
            }
            if (l > 2) {
                int mid = l / 2;
                MyForkJoinTask task1 = new MyForkJoinTask(Arrays.copyOf(source, mid));
                task1.fork();
                MyForkJoinTask task2 = new MyForkJoinTask(Arrays.copyOfRange(source, mid, l));
                task2.fork();
                int[] res1 = task1.join();
                int[] res2 = task2.join();
                int tar[] = merge(res1, res2);
                return tar;
            }
            return null;
        }
    	// 合并数组
        private int[] merge(int[] res1, int[] res2) {
            int l1 = res1.length;
            int l2 = res2.length;
            int l = l1 + l2;
            int tar[] = new int[l];
            for (int i = 0, i1 = 0, i2 = 0; i < l; i++) {
                int v1 = i1 >= l1 ? Integer.MAX_VALUE : res1[i1];
                int v2 = i2 >= l2 ? Integer.MAX_VALUE : res2[i2];
                // 如果条件成立,说明应该取数组array1中的值
                if(v1 < v2) {
                    tar[i] = v1;
                    i1++;
                } else {
                    tar[i] = v2;
                    i2++;
                }
            }
            return tar;
        }
    }

    ForkJoin计算流程

    通过ForkJoinPool提交任务,获取结果流程如下,拆分子任务不一定是二分的形式,可参照MapReduce的模式,也可以按照具体需求进行灵活的设计。

    Java中的ForkJoin是什么及怎么调用

    相关文章

    java速学教程(入门到精通)
    java速学教程(入门到精通)

    java怎么学习?java怎么入门?java在哪学?java怎么学才快?不用担心,这里为大家提供了java速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

    下载

    相关标签:

    本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

    相关专题

    更多
    Golang gRPC 服务开发与Protobuf实战
    Golang gRPC 服务开发与Protobuf实战

    本专题系统讲解 Golang 在 gRPC 服务开发中的完整实践,涵盖 Protobuf 定义与代码生成、gRPC 服务端与客户端实现、流式 RPC(Unary/Server/Client/Bidirectional)、错误处理、拦截器、中间件以及与 HTTP/REST 的对接方案。通过实际案例,帮助学习者掌握 使用 Go 构建高性能、强类型、可扩展的 RPC 服务体系,适用于微服务与内部系统通信场景。

    8

    2026.01.15

    公务员递补名单公布时间 公务员递补要求
    公务员递补名单公布时间 公务员递补要求

    公务员递补名单公布时间不固定,通常在面试前,由招录单位(如国家知识产权局、海关等)发布,依据是原入围考生放弃资格,会按笔试成绩从高到低递补,递补考生需按公告要求限时确认并提交材料,及时参加面试/体检等后续环节。要求核心是按招录单位公告及时响应、提交材料(确认书、资格复审材料)并准时参加面试。

    44

    2026.01.15

    公务员调剂条件 2026调剂公告时间
    公务员调剂条件 2026调剂公告时间

    (一)符合拟调剂职位所要求的资格条件。 (二)公共科目笔试成绩同时达到拟调剂职位和原报考职位的合格分数线,且考试类别相同。 拟调剂职位设置了专业科目笔试条件的,专业科目笔试成绩还须同时达到合格分数线,且考试类别相同。 (三)未进入原报考职位面试人员名单。

    58

    2026.01.15

    国考成绩查询入口 国考分数公布时间2026
    国考成绩查询入口 国考分数公布时间2026

    笔试成绩查询入口已开通,考生可登录国家公务员局中央机关及其直属机构2026年度考试录用公务员专题网站http://bm.scs.gov.cn/pp/gkweb/core/web/ui/business/examResult/written_result.html,查询笔试成绩和合格分数线,点击“笔试成绩查询”按钮,凭借身份证及准考证进行查询。

    11

    2026.01.15

    Java 桌面应用开发(JavaFX 实战)
    Java 桌面应用开发(JavaFX 实战)

    本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

    65

    2026.01.14

    php与html混编教程大全
    php与html混编教程大全

    本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

    36

    2026.01.13

    PHP 高性能
    PHP 高性能

    本专题整合了PHP高性能相关教程大全,阅读专题下面的文章了解更多详细内容。

    75

    2026.01.13

    MySQL数据库报错常见问题及解决方法大全
    MySQL数据库报错常见问题及解决方法大全

    本专题整合了MySQL数据库报错常见问题及解决方法,阅读专题下面的文章了解更多详细内容。

    21

    2026.01.13

    PHP 文件上传
    PHP 文件上传

    本专题整合了PHP实现文件上传相关教程,阅读专题下面的文章了解更多详细内容。

    35

    2026.01.13

    热门下载

    更多
    网站特效
    /
    网站源码
    /
    网站素材
    /
    前端模板

    精品课程

    更多
    相关推荐
    /
    热门推荐
    /
    最新课程
    Kotlin 教程
    Kotlin 教程

    共23课时 | 2.5万人学习

    C# 教程
    C# 教程

    共94课时 | 6.8万人学习

    Java 教程
    Java 教程

    共578课时 | 46.3万人学习

    关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
    php中文网:公益在线php培训,帮助PHP学习者快速成长!
    关注服务号 技术交流群
    PHP中文网订阅号
    每天精选资源文章推送

    Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号