0

0

C++中的Boruvka算法用于最小生成树

PHPz

PHPz

发布时间:2023-08-27 14:53:13

|

1132人浏览过

|

来源于tutorialspoint

转载

c++中的boruvka算法用于最小生成树

在图论中,寻找连通加权图的最小生成树(MST)是一个常见的问题。MST是图的边的子集,它连接了所有的顶点并最小化了总边权。解决这个问题的一种高效算法是Boruvka算法。

语法

struct Edge {
   int src, dest, weight;
};

// Define the structure to represent a subset for union-find
struct Subset {
   int parent, rank;
};

算法

现在,让我们概述Boruvka算法中涉及的寻找最小生成树的步骤−

  • 将 MST 初始化为空集。

  • 为每个顶点创建一个子集,其中每个子集只包含一个顶点。

    立即学习C++免费学习笔记(深入)”;

  • 重复以下步骤,直到最小生成树(MST)有V-1条边(V是图中顶点的数量)−

    • 对于每个子集,找到将其连接到另一个子集的最便宜的边。

    • 将选定的边添加到最小生成树中。

    • 对所选边的子集执行并集操作。

  • 输出最小生成树。

方法

在Boruvka算法中,有多种方法可以找到连接每个子集的最便宜的边。以下是两种常见的方法−

方法一:朴素方法

对于每个子集,遍历所有边,并找到将其连接到另一个子集的最小边。

跟踪选定的边并执行联合操作。

示例

#include 
#include 
#include 

struct Edge {
   int src, dest, weight;
};

// Define the structure to represent a subset for union-find
struct Subset {
   int parent, rank;
};

// Function to find the subset of an element using path compression
int find(Subset subsets[], int i) {
   if (subsets[i].parent != i)
      subsets[i].parent = find(subsets, subsets[i].parent);
   return subsets[i].parent;
}

// Function to perform union of two subsets using union by rank
void unionSets(Subset subsets[], int x, int y) {
   int xroot = find(subsets, x);
   int yroot = find(subsets, y);
   if (subsets[xroot].rank < subsets[yroot].rank)
      subsets[xroot].parent = yroot;
   else if (subsets[xroot].rank > subsets[yroot].rank)
      subsets[yroot].parent = xroot;
   else {
      subsets[yroot].parent = xroot;
      subsets[xroot].rank++;
   }
}

// Function to find the minimum spanning tree using Boruvka's algorithm
void boruvkaMST(std::vector& edges, int V) {
   std::vector selectedEdges; // Stores the edges of the MST

   Subset* subsets = new Subset[V];
   int* cheapest = new int[V];

   // Initialize subsets and cheapest arrays
   for (int v = 0; v < V; v++) {
      subsets[v].parent = v;
      subsets[v].rank = 0;
      cheapest[v] = -1;
   }

   int numTrees = V;
   int MSTWeight = 0;

   // Keep combining components until all components are in one tree
   while (numTrees > 1) {
      for (int i = 0; i < edges.size(); i++) {
         int set1 = find(subsets, edges[i].src);
         int set2 = find(subsets, edges[i].dest);

         if (set1 != set2) {
            if (cheapest[set1] == -1 || edges[cheapest[set1]].weight > edges[i].weight)
               cheapest[set1] = i;
            if (cheapest[set2] == -1 || edges[cheapest[set2]].weight > edges[i].weight)
               cheapest[set2] = i;
         }
      }

      for (int v = 0; v < V; v++) {
         if (cheapest[v] != -1) {
            int set1 = find(subsets, edges[cheapest[v]].src);
            int set2 = find(subsets, edges[cheapest[v]].dest);

            if (set1 != set2) {
               selectedEdges.push_back(edges[cheapest[v]]);
               MSTWeight += edges[cheapest[v]].weight;
               unionSets(subsets, set1, set2);
               numTrees--;
            }

            cheapest[v] = -1;
         }
      }
   }

   // Output the MST weight and edges
   std::cout << "Minimum Spanning Tree Weight: " << MSTWeight << std::endl;
   std::cout << "Selected Edges:" << std::endl;
   for (const auto& edge : selectedEdges) {
      std::cout << edge.src << " -- " << edge.dest << " \tWeight: " << edge.weight << std::endl;
   }

   delete[] subsets;
   delete[] cheapest;
}

int main() {
   // Pre-defined input for testing purposes
   int V = 6;
   int E = 9;
   std::vector edges = {
      {0, 1, 4},
      {0, 2, 3},
      {1, 2, 1},
      {1, 3, 2},
      {1, 4, 3},
      {2, 3, 4},
      {3, 4, 2},
      {4, 5, 1},
      {2, 5, 5}
   };

   boruvkaMST(edges, V);

   return 0;
}

输出

Minimum Spanning Tree Weight: 9
Selected Edges:
0 -- 2 	Weight: 3
1 -- 2 	Weight: 1
1 -- 3 	Weight: 2
4 -- 5 	Weight: 1
3 -- 4 	Weight: 2

Explanation

的中文翻译为:

解释

我们首先定义两个结构 - Edge 和 Subset。 Edge 表示图中的一条边,包含边的源、目的地和权重。 Subset表示并查数据结构的子集,包含父级和排名信息。

find函数是一个辅助函数,它使用路径压缩来查找元素的子集。它递归地查找元素所属的子集的代表(父节点),并压缩路径以优化未来的查询。

unionSets函数是另一个辅助函数,使用按秩合并的方式对两个子集进行合并。它找到两个子集的代表,并根据秩进行合并,以保持平衡树。

boruvkaMST 函数采用边向量和顶点数 (V) 作为输入。它实现了 Boruvka 算法来查找 MST。

在 boruvkaMST 函数内,我们创建一个向量 selectedEdges 来存储 MST 的边。

我们创建一个Subset结构的数组来表示子集,并用默认值初始化它们。

我们还创建了一个数组 cheapest 来跟踪每个子集的最便宜的边。

变量 numTrees 被初始化为顶点的数量,MSTWeight 被初始化为 0。

Autoppt
Autoppt

Autoppt:打造高效与精美PPT的AI工具

下载

该算法通过重复组合组件来进行,直到所有组件都在一棵树中。主循环运行直到 numTrees 变为 1。

在主循环的每次迭代中,我们迭代所有边并找到每个子集的最小加权边。如果边连接两个不同的子集,我们用最小加权边的索引更新最便宜的数组。

接下来,我们遍历所有的子集,如果一个子集存在最小权重的边,我们将其添加到selectedEdges向量中,更新MSTWeight,执行子集的并集操作,并减少numTrees的值。

最后,我们输出 MST 权重和选定的边。

主要功能提示用户输入顶点数和边数。然后,它获取每条边的输入(源、目标、权重)并使用输入调用 boruvkaMST 函数。

方法二:使用优先队列

创建一个按照权重排序的优先队列来存储边。

对于每个子集,从优先级队列中找到将其连接到另一个子集的最小权重边。

跟踪选定的边并执行联合操作。

示例

#include 
#include 
#include 
#include 
using namespace std;

// Edge structure representing a weighted edge in the graph
struct Edge {
   int destination;
   int weight;

   Edge(int dest, int w) : destination(dest), weight(w) {}
};

// Function to find the shortest path using Dijkstra's algorithm
vector dijkstra(const vector>& graph, int source) {
   int numVertices = graph.size();
   vector dist(numVertices, INT_MAX);
   vector visited(numVertices, false);

   dist[source] = 0;
   priority_queue, vector>, greater>> pq;
   pq.push(make_pair(0, source));

   while (!pq.empty()) {
      int u = pq.top().second;
      pq.pop();

      if (visited[u]) {
         continue;
      }

      visited[u] = true;

      for (const Edge& edge : graph[u]) {
         int v = edge.destination;
         int weight = edge.weight;

         if (dist[u] + weight < dist[v]) {
            dist[v] = dist[u] + weight;
            pq.push(make_pair(dist[v], v));
         }
      }
   }

   return dist;
}

int main() {
   int numVertices = 4;
   vector> graph(numVertices);

   // Adding edges to the graph
   graph[0].push_back(Edge(1, 2));
   graph[0].push_back(Edge(2, 5));
   graph[1].push_back(Edge(2, 1));
   graph[1].push_back(Edge(3, 7));
   graph[2].push_back(Edge(3, 3));

   int source = 0;
   vector shortestDistances = dijkstra(graph, source);

   cout << "Shortest distances from source vertex " << source << ":\n";
   for (int i = 0; i < numVertices; i++) {
      cout << "Vertex " << i << ": " << shortestDistances[i] << endl;
   }

   return 0;
}

输出

Shortest distances from source vertex 0:
Vertex 0: 0
Vertex 1: 2
Vertex 2: 3
Vertex 3: 6

Explanation

的中文翻译为:

解释

在这种方法中,我们使用优先队列来优化查找每个子集的最小加权边的过程。下面是代码的详细解释 −

代码结构和辅助函数(如find和unionSets)与之前的方法保持相同。

boruvkaMST 函数被修改为使用优先级队列来有效地找到每个子集的最小加权边。

而不是使用最便宜的数组,我们现在创建一个边的优先队列(pq)。我们用图的边来初始化它。

主循环运行直到 numTrees 变为 1,与之前的方法类似。

在每次迭代中,我们从优先队列中提取最小权重的边(minEdge)。

然后我们使用find函数找到minEdge的源和目标所属的子集。

如果子集不同,我们将minEdge添加到selectedEdges向量中,更新MSTWeight,执行子集的合并,并减少numTrees。

该过程将继续,直到所有组件都在一棵树中。

最后,我们输出 MST 权重和选定的边。

主要功能与之前的方法相同,我们有预定义的输入用于测试目的。

结论

Boruvka 算法为查找加权图的最小生成树提供了一种有效的解决方案。在用 C++ 实现该算法时,我们的团队深入探索了两种不同的路径:一种是传统的或“朴素”的方法。另一个利用优先级队列。取决于当前给定问题的具体要求。每种方法都有一定的优点,可以相应地实施。通过理解和实现 Boruvka 算法,您可以有效地解决 C++ 项目中的最小生成树问题。

相关文章

c++速学教程(入门到精通)
c++速学教程(入门到精通)

c++怎么学习?c++怎么入门?c++在哪学?c++怎么学才快?不用担心,这里为大家提供了c++速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
高德地图升级方法汇总
高德地图升级方法汇总

本专题整合了高德地图升级相关教程,阅读专题下面的文章了解更多详细内容。

68

2026.01.16

全民K歌得高分教程大全
全民K歌得高分教程大全

本专题整合了全民K歌得高分技巧汇总,阅读专题下面的文章了解更多详细内容。

127

2026.01.16

C++ 单元测试与代码质量保障
C++ 单元测试与代码质量保障

本专题系统讲解 C++ 在单元测试与代码质量保障方面的实战方法,包括测试驱动开发理念、Google Test/Google Mock 的使用、测试用例设计、边界条件验证、持续集成中的自动化测试流程,以及常见代码质量问题的发现与修复。通过工程化示例,帮助开发者建立 可测试、可维护、高质量的 C++ 项目体系。

54

2026.01.16

java数据库连接教程大全
java数据库连接教程大全

本专题整合了java数据库连接相关教程,阅读专题下面的文章了解更多详细内容。

39

2026.01.15

Java音频处理教程汇总
Java音频处理教程汇总

本专题整合了java音频处理教程大全,阅读专题下面的文章了解更多详细内容。

19

2026.01.15

windows查看wifi密码教程大全
windows查看wifi密码教程大全

本专题整合了windows查看wifi密码教程大全,阅读专题下面的文章了解更多详细内容。

85

2026.01.15

浏览器缓存清理方法汇总
浏览器缓存清理方法汇总

本专题整合了浏览器缓存清理教程汇总,阅读专题下面的文章了解更多详细内容。

40

2026.01.15

ps图片相关教程汇总
ps图片相关教程汇总

本专题整合了ps图片设置相关教程合集,阅读专题下面的文章了解更多详细内容。

11

2026.01.15

ppt一键生成相关合集
ppt一键生成相关合集

本专题整合了ppt一键生成相关教程汇总,阅读专题下面的的文章了解更多详细内容。

47

2026.01.15

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
C# 教程
C# 教程

共94课时 | 7万人学习

C 教程
C 教程

共75课时 | 4.1万人学习

C++教程
C++教程

共115课时 | 12.7万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号