
给定一个数字 n,我们必须使用异或运算来打印将数字制成 2^X-1 形式的步骤。
- 我们应该进行异或任意 2^M-1 的数字,其中 M 由您选择,在奇数步长。
- 在偶数步长,将数字增加 1
继续执行该步骤,直到n变为2^X-1,并打印所有步骤
示例
Input: 22 Output: Step 1 : Xor with 15 Step 2: Increase by 1 Step 3 : Xor with 7 Step 4: Increase by 1 Step 5 : Xor with 1 Input:7 Output: No Steps to be performed
算法
int find_leftmost_unsetbit(int n)
START
STEP 1 : DECLARE AND ASSIGN ind = -1, i = 1
STEP 2 : LOOP WHILE n
IF !(n & 1) THEN,
ASSIGN ind WITH i
END IF
INCREMENT i BY 1
LEFT SHIFT n BY 1
END WHILe
STEP 3 : RETURN ind
STOP
void perform_steps(int n)
START
STEP 1 : DECLARE AND ASSIGN left = find_leftmost_unsetbit(n)
STEP 2 : IF left == -1 THEN,
PRINT "No Steps to be performed"
RETURN
END IF
STEP 3 : DECLARE AND ASSIGN step = 1
STEP 4 : LOOP WHILE find_leftmost_unsetbit(n) != -1
IF step % 2 == 0 THEN,
INCREMENT n BY 1
PRINT "Step n : Increase by 1"
ELSE
DECLARE AND ASSIGN m =
find_leftmost_unsetbit(n)
AND SET num = (pow(2, m) - 1)
SET n = n ^ num
PRINT "Step N : Xor with Num
END IF
INCREMENT step BY 1
END LOOP
STOP
示例
#include#include //To find the leftmost bit int find_leftmost_unsetbit(int n){ int ind = -1; int i = 1; while (n) { if (!(n & 1)) ind = i; i++; n >>= 1; } return ind; } void perform_steps(int n){ // Find the leftmost unset bit int left = find_leftmost_unsetbit(n); //If there is no bit if (left == -1) { printf("No Steps to be performed "); return; } // To count the number of steps int step = 1; // Iterate till number is in form of 2^x - 1 while (find_leftmost_unsetbit(n) != -1) { // if the step is even then increase by 1 if (step % 2 == 0) { n += 1; printf("Step %d: Increase by 1
", step); } // if the step is odd then xor with 2^m-1 else { // Finding the leftmost unset bit int m = find_leftmost_unsetbit(n); int num = (int)(pow(2, m) - 1); n = n ^ num; printf("Step %d : Xor with %d
", step, num); } // To increase the steps step += 1; } } int main(){ int n = 22; perform_steps(n); return 0; }
输出
如果我们运行上面的程序,那么它将生成以下输出 -
Step 1 : Xor with 15 Step 2 : Increase by 1 Step 3 : Xor with 7 Step 4 : Increase by 1 Step 5 : Xor with 1











