0

0

一元三次方程的解公式!

WBOY

WBOY

发布时间:2024-01-05 19:50:28

|

2178人浏览过

|

来源于Excel办公网

转载

一元三次方程的根公式??只要公式?

一元三次方程根公式的解法

UQ云商B2B2C系统
UQ云商B2B2C系统

UQCMS云商是一款B2B2C电子商务软件 ,非常适合初创的创业者,个人及中小型企业。程序采用PHP+MYSQL,模板采用smarty模板,二次开发,简单方便,无需学习其他框架就可以自行模板设计。永久免费使用,操作简单,安全稳定。支持PC+WAP+微信三种浏览方式,支持微信公众号。

下载

一元三次方程的根公式不能通过通常的演绎思维得出,但可以通过类似解一元二次方程的根公式的配方法来将标准型的一元三次方程化简为特殊型的形式x^3+px+q=0。这种方法可以帮助我们更方便地求解一元三次方程的根。

一元三次方程的解公式的解法只能通过归纳思维得到。我们可以根据一元一次方程、一元二次方程以及特殊的高次方程的根公式的形式进行归纳,从而得到一元三次方程的根公式的形式。归纳得到的形式是x = A^(1/3) + B^(1/3),即为两个开立方之和。 然后,我们需要找出A和B与p、q之间的关系。具体方法如下:

(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到

(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))

(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为

x^3=(A+B)+3(AB)^(1/3)x,移项可得

(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知

(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得

(6)A+B=-q,AB=-(p/3)^3

(7)这样其实就将一元三次方程的根公式化为了一元二次方程的根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即

(8)y1+y2=-(b/a),y1*y2=c/a

(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a

(10)由于型为ay^2+by+c=0的一元二次方程根公式为

y1=-(b+(b^2-4ac)^(1/2))/(2a)

y2=-(b-(b^2-4ac)^(1/2))/(2a)

可化为

(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)

y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)

将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得

(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)

B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)

(13)将A,B代入x=A^(1/3)+B^(1/3)得

(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)

式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要出了其中一个根,另两个根就容易出了

一元三次方程的根公式

一元三次方程根公式的解法

一元三次方程的根公式不能通过通常的演绎思维得出,但可以通过类似解一元二次方程的根公式的配方法来将标准型的一元三次方程化简为特殊型的形式x^3+px+q=0。这种方法可以帮助我们更方便地求解一元三次方程的根。

一元三次方程的解公式的解法只能通过归纳思维得到。我们可以根据一元一次方程、一元二次方程以及特殊的高次方程的根公式的形式进行归纳,从而得到一元三次方程的根公式的形式。归纳得到的形式是x = A^(1/3) + B^(1/3),即为两个开立方之和。 然后,我们需要找出A和B与p、q之间的关系。具体方法如下:

(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到

(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))

(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为

x^3=(A+B)+3(AB)^(1/3)x,移项可得

(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知

(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得

(6)A+B=-q,AB=-(p/3)^3

(7)这样其实就将一元三次方程的根公式化为了一元二次方程的根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即

(8)y1+y2=-(b/a),y1*y2=c/a

(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a

(10)由于型为ay^2+by+c=0的一元二次方程根公式为

y1=-(b+(b^2-4ac)^(1/2))/(2a)

y2=-(b-(b^2-4ac)^(1/2))/(2a)

可化为

(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)

y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)

将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得

(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)

B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)

(13)将A,B代入x=A^(1/3)+B^(1/3)得

(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)

式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要出了其中一个根,另两个根就容易出了

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
c++ 根号
c++ 根号

本专题整合了c++根号相关教程,阅读专题下面的文章了解更多详细内容。

70

2026.01.23

c++空格相关教程合集
c++空格相关教程合集

本专题整合了c++空格相关教程,阅读专题下面的文章了解更多详细内容。

73

2026.01.23

yy漫画官方登录入口地址合集
yy漫画官方登录入口地址合集

本专题整合了yy漫画入口相关合集,阅读专题下面的文章了解更多详细内容。

298

2026.01.23

漫蛙最新入口地址汇总2026
漫蛙最新入口地址汇总2026

本专题整合了漫蛙最新入口地址大全,阅读专题下面的文章了解更多详细内容。

471

2026.01.23

C++ 高级模板编程与元编程
C++ 高级模板编程与元编程

本专题深入讲解 C++ 中的高级模板编程与元编程技术,涵盖模板特化、SFINAE、模板递归、类型萃取、编译时常量与计算、C++17 的折叠表达式与变长模板参数等。通过多个实际示例,帮助开发者掌握 如何利用 C++ 模板机制编写高效、可扩展的通用代码,并提升代码的灵活性与性能。

17

2026.01.23

php远程文件教程合集
php远程文件教程合集

本专题整合了php远程文件相关教程,阅读专题下面的文章了解更多详细内容。

114

2026.01.22

PHP后端开发相关内容汇总
PHP后端开发相关内容汇总

本专题整合了PHP后端开发相关内容,阅读专题下面的文章了解更多详细内容。

79

2026.01.22

php会话教程合集
php会话教程合集

本专题整合了php会话教程相关合集,阅读专题下面的文章了解更多详细内容。

94

2026.01.22

宝塔PHP8.4相关教程汇总
宝塔PHP8.4相关教程汇总

本专题整合了宝塔PHP8.4相关教程,阅读专题下面的文章了解更多详细内容。

74

2026.01.22

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Vue.js 开发基础教程
Vue.js 开发基础教程

共33课时 | 7.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号