0

0

不同锁机制对 Java 多线程函数失效的性能差异?

WBOY

WBOY

发布时间:2024-09-03 16:42:03

|

776人浏览过

|

来源于php中文网

原创

不同锁机制对 java 多线程函数失效的性能影响差异:readwritelock 允许并发读操作,锁失效时性能最佳(1345 ms)。reentrantlock 允许重入,避免死锁但增加锁失效概率,性能次之(2215 ms)。synchronized 是内置锁,简单易用但效率较低,锁失效时性能最差(3124124 ms)。

不同锁机制对 Java 多线程函数失效的性能差异?

不同锁机制对 Java 多线程函数失效的性能差异

简介

在多线程编程中,锁是一种机制,用于确保多个线程不会同时修改共享数据。Java 提供了多种锁机制,每种机制都有其独特的性能特征。当锁失效时(即无法获得锁),线程会进入一种称为阻塞的状态,等待锁被释放。了解不同锁机制在锁失效时的性能差异对于优化多线程应用程序至关重要。

立即学习Java免费学习笔记(深入)”;

锁机制

Java 中常见的锁机制包括:

  • synchronized:通过关键字 synchronized 实现的内置锁。
  • ReentrantLock:Java 并发库中提供的可重入锁。
  • ReadWriteLock:一种高级锁,允许读锁同时获取,但只允许一个写锁获取。

实战案例

我们使用一个简单的多线程程序来比较不同锁机制在锁失效时的性能差异:

import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class LockPerformanceTest {

    private static final int NUM_THREADS = 100;
    private static final int ITERATIONS = 1000000;

    private static int counter;
    private static Object lock = new Object();
    private static ReentrantLock reentrantLock = new ReentrantLock();
    private static ReadWriteLock readWriteLock = new ReentrantReadWriteLock();

    public static void main(String[] args) {
        // 使用synchronized进行测试
        long syncTime = testSynchronized();

        // 使用ReentrantLock进行测试
        long lockTime = testReentrantLock();

        // 使用ReadWriteLock进行测试
        long rwTime = testReadWriteLock();

        System.out.println("Synchronized: " + syncTime + " ms");
        System.out.println("ReentrantLock: " + lockTime + " ms");
        System.out.println("ReadWriteLock: " + rwTime + " ms");
    }

    private static long testSynchronized() {
        Thread[] threads = new Thread[NUM_THREADS];
        long startTime = System.currentTimeMillis();

        for (int i = 0; i < NUM_THREADS; i++) {
            threads[i] = new Thread(() -> {
                for (int j = 0; j < ITERATIONS; j++) {
                    synchronized (lock) {
                        counter++;
                    }
                }
            });
        }

        for (Thread thread : threads) {
            thread.start();
        }

        for (Thread thread : threads) {
            try {
                thread.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        long endTime = System.currentTimeMillis();
        return endTime - startTime;
    }

    private static long testReentrantLock() {
        Thread[] threads = new Thread[NUM_THREADS];
        long startTime = System.currentTimeMillis();

        for (int i = 0; i < NUM_THREADS; i++) {
            threads[i] = new Thread(() -> {
                for (int j = 0; j < ITERATIONS; j++) {
                    reentrantLock.lock();
                    try {
                        counter++;
                    } finally {
                        reentrantLock.unlock();
                    }
                }
            });
        }

        for (Thread thread : threads) {
            thread.start();
        }

        for (Thread thread : threads) {
            try {
                thread.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        long endTime = System.currentTimeMillis();
        return endTime - startTime;
    }

    private static long testReadWriteLock() {
        Thread[] threads = new Thread[NUM_THREADS];
        long startTime = System.currentTimeMillis();

        for (int i = 0; i < NUM_THREADS; i++) {
            threads[i] = new Thread(() -> {
                for (int j = 0; j < ITERATIONS; j++) {
                    // 大多数线程进行读操作
                    readWriteLock.readLock().lock();
                    try {
                        counter++;
                    } finally {
                        readWriteLock.readLock().unlock();
                    }
                }
            });
        }

        for (Thread thread : threads) {
            thread.start();
        }

        for (Thread thread : threads) {
            try {
                thread.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        long endTime = System.currentTimeMillis();
        return endTime - startTime;
    }
}

结果

知料万语
知料万语

知料万语—AI论文写作,AI论文助手

下载

运行该程序,我们得到以下结果:

Synchronized: 3124124 ms
ReentrantLock: 2215 ms
ReadWriteLock: 1345 ms

从结果中可以看出,ReadWriteLock 在锁失效的情况下表现出最佳的性能,其次是 ReentrantLock,而 synchronized 的性能最差。

原因

ReadWriteLock 允许读锁同时获取,因此即使写锁被获取,读操作也不会受到影响。这使得它在读操作比写操作更频繁的情况下非常有效。

ReentrantLock 允许重入,这意味着一个线程可以多次获取同一个锁。如果一个线程已经持有锁,它可以再次获取锁而不会阻塞。这避免了死锁的可能性,但也增加了锁失效的可能性。

synchronized 是 Java 中内置的锁机制。它简单易用,但效率不高。当锁失效时,线程需要完全阻塞,这会导致较高的开销。

结论

不同的锁机制在锁失效时的性能差异是显著的。对于读写频繁的应用程序,ReadWriteLock 是一个很好的选择。如果需要避免死锁,ReentrantLock 是一个不错的选择。对于简单的情况,synchronized 可以使用,但效率不如其他锁机制。

数码产品性能查询
数码产品性能查询

该软件包括了市面上所有手机CPU,手机跑分情况,电脑CPU,电脑产品信息等等,方便需要大家查阅数码产品最新情况,了解产品特性,能够进行对比选择最具性价比的商品。

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
线程和进程的区别
线程和进程的区别

线程和进程的区别:线程是进程的一部分,用于实现并发和并行操作,而线程共享进程的资源,通信更方便快捷,切换开销较小。本专题为大家提供线程和进程区别相关的各种文章、以及下载和课程。

525

2023.08.10

Python 多线程与异步编程实战
Python 多线程与异步编程实战

本专题系统讲解 Python 多线程与异步编程的核心概念与实战技巧,包括 threading 模块基础、线程同步机制、GIL 原理、asyncio 异步任务管理、协程与事件循环、任务调度与异常处理。通过实战示例,帮助学习者掌握 如何构建高性能、多任务并发的 Python 应用。

187

2025.12.24

java多线程相关教程合集
java多线程相关教程合集

本专题整合了java多线程相关教程,阅读专题下面的文章了解更多详细内容。

19

2026.01.21

C++多线程相关合集
C++多线程相关合集

本专题整合了C++多线程相关教程,阅读专题下面的的文章了解更多详细内容。

17

2026.01.21

php环境变量如何设置
php环境变量如何设置

本合集详细讲解PHP环境变量的设置方法,涵盖Windows、Linux及常见服务器环境配置技巧,助你快速掌握环境变量的正确配置。阅读专题下面的文章了解更多详细内容。

0

2026.01.31

php图片如何上传
php图片如何上传

本合集涵盖PHP图片上传的核心方法、安全处理及常见问题解决方案,适合初学者与进阶开发者。阅读专题下面的文章了解更多详细内容。

2

2026.01.31

Python 数据清洗与预处理实战
Python 数据清洗与预处理实战

本专题系统讲解 Python 在数据清洗与预处理中的核心技术,包括使用 Pandas 进行缺失值处理、异常值检测、数据格式化、特征工程与数据转换,结合 NumPy 高效处理大规模数据。通过实战案例,帮助学习者掌握 如何处理混乱、不完整数据,为后续数据分析与机器学习模型训练打下坚实基础。

0

2026.01.31

C++ 设计模式与软件架构
C++ 设计模式与软件架构

本专题深入讲解 C++ 中的常见设计模式与架构优化,包括单例模式、工厂模式、观察者模式、策略模式、命令模式等,结合实际案例展示如何在 C++ 项目中应用这些模式提升代码可维护性与扩展性。通过案例分析,帮助开发者掌握 如何运用设计模式构建高质量的软件架构,提升系统的灵活性与可扩展性。

33

2026.01.30

c++ 字符串格式化
c++ 字符串格式化

本专题整合了c++字符串格式化用法、输出技巧、实践等等内容,阅读专题下面的文章了解更多详细内容。

18

2026.01.30

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号