0

0

简易版的TimSort排序算法

高洛峰

高洛峰

发布时间:2016-10-31 10:53:48

|

2293人浏览过

|

来源于php中文网

原创

1. 简易版本TimSort排序算法原理与实现

timsort排序算法是python和java针对对象数组的默认排序算法。timsort排序算法的本质是归并排序算法,只是在归并排序算法上进行了大量的优化。对于日常生活中我们需要排序的数据通常不是完全随机的,而是部分有序的,或者部分逆序的,所以timsort充分利用已有序的部分进行归并排序。现在我们提供一个简易版本timsort排序算法,它主要做了以下优化:

1.1利用原本已有序的片段

首先规定一个最小归并长度。检查数组中原本有序的片段,如果已有序的长度小于规定的最小归并长度,则通过插入排序对已有序的片段进行进行扩充(这样做的原因避免归并长度较小的片段,因为这样的效率比较低)。将有序片段的起始索引位置和已有序的长度入栈。

1.2避免一个较长的有序片段和一个较小的有序片段进行归并,因为这样的效率比较低:

(1)如果栈中存在已有序的至少三个序列,我们用X,Y,Z依次表示从栈顶向下的三个已有序列片段,当三者的长度满足X+Y>=Z时进行归并。

   (1.1)如果X是三者中长度最大的,先将X,Y,Z出栈,应该先归并Y和Z,然后将Y和Z归并的结果入栈,最后X入栈

   (1.2)否则将X和Y出栈,归并后结果入栈。注意,实际上我们不会真正的出栈,写代码中有一些技巧可以达到相同的效果,而且效率更高。

(2)如果不满足X+Y>=Z的条件或者栈中仅存在两个序列,我们用X,Y依次表示从栈顶向下的两个已有序列的长度,如果X>=Y则进行归并,然后将归并后的有序片段结果入栈。

1.3在归并两个已有序的片段时,采用了所谓的飞奔(gallop)模式,这样可以减少参与归并的数据长度

假设需要归并的两个已有序片段分别为X和Y,如果X片段的前m个元素都比Y片段的首元素小,那么这m个元素实际上是不需要参与归并的,因为归并后这m个元素仍然位于原来的位置。同理如果Y片段的最后n个元素都比X的最后一个元素大,那么Y的最后n个元素也不必参与归并。这样就减少了归并数组的长度(简易版没有这么做),也较少了待排序数组与辅助数组之间数据来回复制的长度,进而提高了归并的效率。

2. Java源代码

package datastruct;
 
import java.lang.reflect.Array;
import java.util.Arrays;
import java.util.Random;
import java.util.Scanner;
 
public class SimpleTimSort>{
    //最小归并长度
    private static final int MIN_MERGE = 16;
    //待排序数组
    private final T[] a;
    //辅助数组
    private T[] aux;
    //用两个数组表示栈
    private int[] runsBase = new int[40];
    private int[] runsLen = new int[40];
    //表示栈顶指针
    private int stackTop = 0;
     
    @SuppressWarnings("unchecked")
    public SimpleTimSort(T[] a){
        this.a = a;
        aux = (T[]) Array.newInstance(a[0].getClass(), a.length);
    }
     
    //T[from, to]已有序,T[to]以后的n元素插入到有序的序列中
    private void insertSort(T[] a, int from, int to, int n){
        int i = to + 1;
        while(n > 0){
            T tmp = a[i];
            int j;
            for(j = i-1; j >= from && tmp.compareTo(a[j]) < 0; j--){
                a[j+1] = a[j];
            }
            a[++j] = tmp;
            i++;
            n--;
        }
    }
     
    //返回从a[from]开始,的最长有序片段的个数
    private int maxAscendingLen(T[] a, int from){
        int n = 1;
        int i = from;
         
        if(i >= a.length){//超出范围
            return 0;
        }
         
        if(i == a.length-1){//只有一个元素
            return 1;
        }
         
        //至少两个元素
        if(a[i].compareTo(a[i+1]) < 0){//升序片段
            while(i+1 <= a.length-1 && a[i].compareTo(a[i+1]) <= 0){
                i++;
                n++;
            }
            return n;
        }else{//降序片段,这里是严格的降序,不能有>=的情况,否则不能保证稳定性
            while(i+1 <= a.length-1 && a[i].compareTo(a[i+1]) > 0){
                i++;
                n++;
            }
            //对降序片段逆序
            int j = from;
            while(j < i){
                T tmp = a[i];
                a[i] = a[j];
                a[j] = tmp;
                j++;
                i--;
            }
            return n;
        }
    }
     
    //对有序片段的起始索引位置和长度入栈
    private void pushRun(int base, int len){
        runsBase[stackTop] = base;
        runsLen[stackTop] = len;
        stackTop++;
    }
     
    //返回-1表示不需要归并栈中的有序片段
    public int needMerge(){
        if(stackTop > 1){//至少两个run序列
            int x = stackTop - 2;
            //x > 0 表示至少三个run序列
            if(x > 0 && runsLen[x-1] <= runsLen[x] + runsLen[x+1]){
                if(runsLen[x-1] < runsLen[x+1]){
                    //说明 runsLen[x+1]是runsLen[x]和runsLen[x-1]中最大的值
                    //应该先合并runsLen[x]和runsLen[x-1]这两段run
                    return --x;
                }else{
                    return x;
                }
            }else
            if(runsLen[x] <= runsLen[x+1]){
                return x;
            }else{
                return -1;
            }
        }
        return -1;
    }
     
    //返回后一个片段的首元素在前一个片段应该位于的位置
    private int gallopLeft(T[] a, int base, int len, T key){
        int i = base;
        while(i <= base + len - 1){
            if(key.compareTo(a[i]) >= 0){
                i++;
            }else{
                break;
            }
        }
        return i;
    }
     
    //返回前一个片段的末元素在后一个片段应该位于的位置
    private int gallopRight(T[] a, int base, int len, T key){
        int i = base + len -1;
        while(i >= base){
            if(key.compareTo(a[i]) <= 0){
                i--;
            }else{
                break;
            }
        }
        return i;
    }
     
    public void mergeAt(int x){
        int base1 = runsBase[x];
        int len1 = runsLen[x];
         
        int base2 = runsBase[x+1];
        int len2 = runsLen[x+1];
         
        //合并run[x]和run[x+1],合并后base不用变,长度需要发生变化
        runsLen[x] = len1 + len2; 
        if(stackTop == x + 3){
            //栈顶元素下移,省去了合并后的先出栈,再入栈
            runsBase[x+1] = runsBase[x+2];
            runsLen[x+1] = runsLen[x+2];
        }
        stackTop--;
         
        //飞奔模式,减小归并的长度
        int from = gallopLeft(a, base1, len1, a[base2]);
        if(from == base1+len1){
            return;
        }
        int to = gallopRight(a, base2, len2, a[base1+len1-1]);
         
        //对两个需要归并的片段长度进行归并
        System.arraycopy(a, from, aux, from, to - from + 1);
        int i = from;
        int iend = base1 + len1 - 1;
         
        int j = base2;
        int jend = to;
         
        int k = from;
        int kend = to;
         
        while(k <= kend){
            if(i > iend){
                a[k] = aux[j++];
            }else
            if(j > jend){
                a[k] = aux[i++];
            }else
            if(aux[i].compareTo(aux[j]) <= 0){//等号保证排序的稳定性
                a[k] = aux[i++];
            }else{
                a[k] = aux[j++];
            }
            k++;
        }
    }
     
    //强制归并已入栈的序列
    private void forceMerge(){
        while(stackTop > 1){
            mergeAt(stackTop-2);
        }
    }
     
    //timSort的主方法
    public void timSort(){
        //n表示剩余长度
        int n = a.length; 
         
        if(n < 2){
            return;
        }
         
        //待排序的长度小于MIN_MERGE,直接采用插入排序完成
        if(n < MIN_MERGE){
            insertSort(a, 0, 0, a.length-1);
            return;
        }
         
        int base = 0;
        while(n > 0){
            int len = maxAscendingLen(a, base);
            if(len < MIN_MERGE){
                int abscent = n > MIN_MERGE ?  MIN_MERGE - len : n - len;
                insertSort(a, base, base + len-1, abscent);
                len = len + abscent;
            }
            pushRun(base, len);
            n = n - len;
            base = base + len;
             
            int x;
            while((x  = needMerge()) >= 0 ){
                mergeAt(x);
            }
        }
        forceMerge();
    }
     
    public static void main(String[] args){
         
        //随机产生测试用例
        Random rnd = new Random(System.currentTimeMillis());
        boolean flag = true;
        while(flag){
             
            //首先产生一个全部有序的数组
            Integer[] arr1 = new Integer[1000];
            for(int i = 0; i < arr1.length; i++){
                arr1[i] = i;
            }
             
            //有序的基础上随机交换一些值
            for(int i = 0; i < (int)(0.1*arr1.length); i++){
                int x,y,tmp;
                x = rnd.nextInt(arr1.length);
                y = rnd.nextInt(arr1.length);
                tmp = arr1[x];
                arr1[x] = arr1[y];
                arr1[y] = tmp;
            }
             
            //逆序部分数据
            for(int i = 0; i <(int)(0.05*arr1.length); i++){
                int x = rnd.nextInt(arr1.length);
                int y = rnd.nextInt((int)(arr1.length*0.01)+x);
                if(y >= arr1.length){
                    continue;
                }
                while(x < y){
                    int tmp;
                    tmp = arr1[x];
                    arr1[x] = arr1[y];
                    arr1[y] = tmp;
                    x++;
                    y--;
                }
            }
             
            Integer[] arr2 = arr1.clone();
            Integer[] arr3 = arr1.clone();
            Arrays.sort(arr2);
             
            SimpleTimSort sts = new SimpleTimSort(arr1);
            sts.timSort();
             
            //比较SimpleTimSort排序和库函数提供的排序结果比较是否一致
            //如果没有打印任何结果,说明排序结果正确
            if(!Arrays.deepEquals(arr1, arr2)){
                for(int i = 0; i < arr1.length; i++){
                    if(!arr1[i].equals(arr2[i])){
                        System.out.printf("%d: arr1 %d  arr2 %d\n",i,arr1[i],arr2[i]);
                    }
                }
                System.out.println(Arrays.deepToString(arr3));
                flag = false;
            }
        }
    }
}

3.TimSort算法应当注意的问题

TimSort算法只会对连续的两个片段进行归并,这样才能保证算法的稳定性。

最小归并长度和栈的长度存在一定的关系,如果增大最小归并长度,则栈的长度也应该增大,否则可能引起栈越界的风险(代码中栈是通过长度为40的数组来实现的)。

4.完整版的TimSort算法

实际上,完整版的TimSort算法会在上述简易TimSort算法上还有大量的优化。比如有序序列小于最小归并长度时,我们可以利用类似二分查找的方式来找到应该插入的位置来对数组进行长度扩充。再比如飞奔模式中采用二分查找的方式查找第二个序列的首元素在第一个序列的位置,同时还可以使用较小的辅助空间完成归并,有兴趣的同学可以查看Java中的源代码来学习。

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

37

2026.01.14

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

19

2026.01.13

PHP 高性能
PHP 高性能

本专题整合了PHP高性能相关教程大全,阅读专题下面的文章了解更多详细内容。

37

2026.01.13

MySQL数据库报错常见问题及解决方法大全
MySQL数据库报错常见问题及解决方法大全

本专题整合了MySQL数据库报错常见问题及解决方法,阅读专题下面的文章了解更多详细内容。

19

2026.01.13

PHP 文件上传
PHP 文件上传

本专题整合了PHP实现文件上传相关教程,阅读专题下面的文章了解更多详细内容。

16

2026.01.13

PHP缓存策略教程大全
PHP缓存策略教程大全

本专题整合了PHP缓存相关教程,阅读专题下面的文章了解更多详细内容。

6

2026.01.13

jQuery 正则表达式相关教程
jQuery 正则表达式相关教程

本专题整合了jQuery正则表达式相关教程大全,阅读专题下面的文章了解更多详细内容。

3

2026.01.13

交互式图表和动态图表教程汇总
交互式图表和动态图表教程汇总

本专题整合了交互式图表和动态图表的相关内容,阅读专题下面的文章了解更多详细内容。

45

2026.01.13

nginx配置文件详细教程
nginx配置文件详细教程

本专题整合了nginx配置文件相关教程详细汇总,阅读专题下面的文章了解更多详细内容。

9

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Kotlin 教程
Kotlin 教程

共23课时 | 2.5万人学习

C# 教程
C# 教程

共94课时 | 6.7万人学习

Java 教程
Java 教程

共578课时 | 45.7万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号