一:递归实现
使用公式f[n]=f[n-1]+f[n-2],依次递归计算,递归结束条件是f[1]=1,f[2]=1。
二:数组实现
空间复杂度和时间复杂度都是0(n),效率一般,比递归来得快。
三:vector
时间复杂度是0(n),时间复杂度是0(1),就是不知道vector的效率高不高,当然vector有自己的属性会占用资源。
四:queue
当然队列比数组更适合实现斐波那契数列,时间复杂度和空间复杂度和vector
f(n)=f(n-1)+f(n-2),f(n)只和f(n-1)和f(n-2)有关,f(n)入队列后,f(n-2)就可以出队列了。
五:迭代实现
迭代实现是最高效的,时间复杂度是0(n),空间复杂度是0(1)。
六:公式实现
百度的时候,发现原来斐波那契数列有公式的,所以可以使用公式来计算的。
由于double类型的精度还不够,所以程序算出来的结果会有误差,如果把公式展开计算,得出的结果就是正确的。
完整的实现代码如下:
#include "iostream"
#include "queue"
#include "cmath"
using namespace std;
int fib1(int index) //递归实现
{
if(index<1)
{
return -1;
}
if(index==1 || index==2)
return 1;
return fib1(index-1)+fib1(index-2);
}
int fib2(int index) //数组实现
{
if(index<1)
{
return -1;
}
if(index<3)
{
return 1;
}
int *a=new int[index];
a[0]=a[1]=1;
for(int i=2;i实现
{
if(index<1)
{
return -1;
}
vector a(2,1); //创建一个含有2个元素都为1的向量
a.reserve(3);
for(int i=2;iq;
q.push(1);
q.push(1);
for(int i=2;i七:二分矩阵方法

如上图,Fibonacci 数列中任何一项可以用矩阵幂算出,而n次幂是可以在logn的时间内算出的。
下面贴出代码:
void multiply(int c[2][2],int a[2][2],int b[2][2],int mod)
{
int tmp[4];
tmp[0]=a[0][0]*b[0][0]+a[0][1]*b[1][0];
tmp[1]=a[0][0]*b[0][1]+a[0][1]*b[1][1];
tmp[2]=a[1][0]*b[0][0]+a[1][1]*b[1][0];
tmp[3]=a[1][0]*b[0][1]+a[1][1]*b[1][1];
c[0][0]=tmp[0]%mod;
c[0][1]=tmp[1]%mod;
c[1][0]=tmp[2]%mod;
c[1][1]=tmp[3]%mod;
}//计算矩阵乘法,c=a*b
int fibonacci(int n,int mod)//mod表示数字太大时需要模的数
{
if(n==0)return 0;
else if(n<=2)return 1;//这里表示第0项为0,第1,2项为1
int a[2][2]={{1,1},{1,0}};
int result[2][2]={{1,0},{0,1}};//初始化为单位矩阵
int s;
n-=2;
while(n>0)
{
if(n%2 == 1)
multiply(result,result,a,mod);
multiply(a,a,a,mod);
n /= 2;
}//二分法求矩阵幂
s=(result[0][0]+result[0][1])%mod;//结果
return s;
}附带的再贴上二分法计算a的n次方函数。
int pow(int a,int n)
{
int ans=1;
while(n)
{
if(n&1)
ans*=a;
a*=a;
n>>=1;
}
return ans;
}更多求斐波那契(Fibonacci)数列通项的七种实现方法相关文章请关注PHP中文网!









