0

0

方程 x = b*(sumofdigits(x) ^ a)+c 的整数解的数量

PHPz

PHPz

发布时间:2023-09-08 18:01:04

|

1103人浏览过

|

来源于tutorialspoint

转载

方程 x = b*(sumofdigits(x) ^ a)+c 的整数解的数量

假设给定三个整数 a、b 和 c,并且有一个方程 x = b* (sumofdigits(x)^a) +c。 这里, sumofdigits(x ) 是x中所有数字的总和。为了找到满足方程的所有可能的积分解,我们将探索 C++ 中的各种方法。

输入输出场景

下面给出的是 a、b 和 c 的值。满足方程 x = b* (sumofdigits(x)^a) +c 的不同积分解作为输出给出。

Input: a = 2, b = 2, c = -3
Output: 125, 447, 575

在上述情况中,a的值为2,b的值为2,c的值为-3,而x的可能值为125、447和575。

考虑数字125,其各位数字之和为8,如果将这个值代入方程b*(sum(x)^a) +c,答案为125,与x相等。因此,它是方程的一个可能解。

注意- 该方程的积分解在 1 到 109 范围内。

使用递归

我们可以使用递归搜索来找到给定方程的积分解。

我们需要创建一个名为sumOfDigits()的函数,用于计算任何给定数字N的数字之和。

  • 使用模运算符和除运算符迭代N 的数字。

  • 模运算符用于提取N的最后一位数字。

  • 在每次迭代后,将存储在变量 sum 中的数字逐个相加。

我们创建一个integralSolutions()函数来计算积分解。

Napkin AI
Napkin AI

Napkin AI 可以将您的文本转换为图表、流程图、信息图、思维导图视觉效果,以便快速有效地分享您的想法。

下载
  • 它使用sumOfDigits函数计算x的数字总和。

  • 接下来,使用 for 循环我们将总和求 a 次方。

  • 我们通过将b乘以power并加上c来评估方程的右侧。

  • 如果x的值等于右侧的值,则被视为一个整数解。

接下来,我们有递归函数来搜索指定范围内的积分解。

示例

#include 
using namespace std;

int sumOfDigits(int N) {
   int sum = 0;
   while (N != 0) {
      sum += N % 10; // addition of the last digit of N
      N /= 10;
   }
   return sum;
}
void integralSolutions(int x, int a, int b, int c) {
   int sum = sumOfDigits(x);
   int power = 1;
   for (int j = 0; j < a; j++) {
      power *= sum;
   }
   int rightHandSide = b * power + c;
   if (x == rightHandSide) {
      std::cout << "Integral solution: " << x << std::endl;
   }
}
void recursion(int start, int end, int a, int b, int c) {
   if (start > end) {
      return;
   }
   integralSolutions(start, a, b, c);
   recursion(start + 1, end, a, b, c);
}
int main() {
   int a = 1, b = 3, c = 5;
   recursion(1, 100000, a, b, c);
   return 0;
}

输出

Integral solution: 11
Integral solution: 38

分段错误 当递归搜索中指定范围的结束值超过100000时,会出现此错误。因此,您不能有超过该值的x值。

使用简单迭代

如果你想要大于100000的x的整数解,那么我们不使用递归。在这里,我们将使用从1到109的x的简单迭代,并将其与方程的右侧值进行比较。

示例

#include 
using namespace std;

int sumOfDigits(int N) {
   int sum = 0;
   while (N != 0) {
      sum += N % 10;
      N /= 10;
   }
   return sum;
}

bool integralSolution(int x, int a, int b, int c) {
   int sum = sumOfDigits(x);
   int power = 1;
   for (int i = 0; i < a; i++) {
      power *= sum;
   }
   int rightHandSide = b * power + c;
   return x == rightHandSide;
}

int main() {
   int a = 3, b = 5, c = 8;
   // x ranges from 1 to 109
   for (int x = 1; x <= 1000000000; x++) {
      if (integralSolution(x, a, b, c)) {
         std::cout << "Integral solution: " << x << std::endl;
      }
   }
   return 0;
}

输出

Integral solution: 53248
Integral solution: 148963

结论

我们探索了寻找方程 x = b* (sumofdigits(x)^a) +c 积分解的方法,其中包括使用递归或简单迭代。递归方法允许您灵活地指定解的范围。但是,它增加了时间复杂度,并且可能会显示较大范围值的分段错误,从而导致堆栈溢出。

迭代方法在时间复杂度和内存使用方面都很高效。然而,它提供的灵活性有限且代码更复杂。因此,这两种方法都有各自的优点和缺点。根据您的需求,您可以选择任何一种方法。

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
java基础知识汇总
java基础知识汇总

java基础知识有Java的历史和特点、Java的开发环境、Java的基本数据类型、变量和常量、运算符和表达式、控制语句、数组和字符串等等知识点。想要知道更多关于java基础知识的朋友,请阅读本专题下面的的有关文章,欢迎大家来php中文网学习。

1463

2023.10.24

Go语言中的运算符有哪些
Go语言中的运算符有哪些

Go语言中的运算符有:1、加法运算符;2、减法运算符;3、乘法运算符;4、除法运算符;5、取余运算符;6、比较运算符;7、位运算符;8、按位与运算符;9、按位或运算符;10、按位异或运算符等等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

228

2024.02.23

php三元运算符用法
php三元运算符用法

本专题整合了php三元运算符相关教程,阅读专题下面的文章了解更多详细内容。

85

2025.10.17

堆和栈的区别
堆和栈的区别

堆和栈的区别:1、内存分配方式不同;2、大小不同;3、数据访问方式不同;4、数据的生命周期。本专题为大家提供堆和栈的区别的相关的文章、下载、课程内容,供大家免费下载体验。

388

2023.07.18

堆和栈区别
堆和栈区别

堆(Heap)和栈(Stack)是计算机中两种常见的内存分配机制。它们在内存管理的方式、分配方式以及使用场景上有很大的区别。本文将详细介绍堆和栈的特点、区别以及各自的使用场景。php中文网给大家带来了相关的教程以及文章欢迎大家前来学习阅读。

571

2023.08.10

堆和栈的区别
堆和栈的区别

堆和栈的区别:1、内存分配方式不同;2、大小不同;3、数据访问方式不同;4、数据的生命周期。本专题为大家提供堆和栈的区别的相关的文章、下载、课程内容,供大家免费下载体验。

388

2023.07.18

堆和栈区别
堆和栈区别

堆(Heap)和栈(Stack)是计算机中两种常见的内存分配机制。它们在内存管理的方式、分配方式以及使用场景上有很大的区别。本文将详细介绍堆和栈的特点、区别以及各自的使用场景。php中文网给大家带来了相关的教程以及文章欢迎大家前来学习阅读。

571

2023.08.10

Golang gRPC 服务开发与Protobuf实战
Golang gRPC 服务开发与Protobuf实战

本专题系统讲解 Golang 在 gRPC 服务开发中的完整实践,涵盖 Protobuf 定义与代码生成、gRPC 服务端与客户端实现、流式 RPC(Unary/Server/Client/Bidirectional)、错误处理、拦截器、中间件以及与 HTTP/REST 的对接方案。通过实际案例,帮助学习者掌握 使用 Go 构建高性能、强类型、可扩展的 RPC 服务体系,适用于微服务与内部系统通信场景。

4

2026.01.15

公务员递补名单公布时间 公务员递补要求
公务员递补名单公布时间 公务员递补要求

公务员递补名单公布时间不固定,通常在面试前,由招录单位(如国家知识产权局、海关等)发布,依据是原入围考生放弃资格,会按笔试成绩从高到低递补,递补考生需按公告要求限时确认并提交材料,及时参加面试/体检等后续环节。要求核心是按招录单位公告及时响应、提交材料(确认书、资格复审材料)并准时参加面试。

23

2026.01.15

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号