0

0

比较自底向上算法和自顶向下算法的传递闭包算法

王林

王林

发布时间:2024-01-13 15:12:07

|

1311人浏览过

|

来源于php中文网

原创

传递闭包算法对比:自底向上算法vs自顶向下算法

传递闭包算法对比:自底向上算法 vs 自顶向下算法

引言:
传递闭包算法是图论中的一种常用算法,能够在有向图或无向图中寻找图的传递闭包。在这篇文章中,我们将对传递闭包算法的两种常用实现方式进行对比:自底向上算法和自顶向下算法,并给出具体的代码示例。

一、自底向上算法:
自底向上算法是传递闭包算法的一种实现方式,通过计算图中所有可能的路径,构建出图的传递闭包。其算法步骤如下:

  1. 初始化传递闭包矩阵TransitiveClosure,将其设置为图的邻接矩阵。
  2. 对于每一个顶点v,将TransitiveClosurev设置为1,表示顶点本身是可达的。
  3. 对于每一对顶点(u,v),如果存在一条从u到v的边,则将TransitiveClosureu设置为1。
  4. 对于每一对顶点(u,v),以及所有其他顶点w,如果TransitiveClosureu和TransitiveClosurew均为1,则将TransitiveClosureu设置为1。
  5. 循环迭代第4步,直到传递闭包矩阵不再发生变化为止。

下面是自底向上算法的具体代码示例,以邻接矩阵Graph和传递闭包矩阵TransitiveClosure为输入:

def transitive_closure(Graph, TransitiveClosure):
    num_vertices = len(Graph)

    for v in range(num_vertices):
        TransitiveClosure[v][v] = 1

    for u in range(num_vertices):
        for v in range(num_vertices):
            if Graph[u][v]:
                TransitiveClosure[u][v] = 1

    for w in range(num_vertices):
        for u in range(num_vertices):
            for v in range(num_vertices):
                if TransitiveClosure[u][w] and TransitiveClosure[w][v]:
                    TransitiveClosure[u][v] = 1

    return TransitiveClosure

二、自顶向下算法:
自顶向下算法也是传递闭包算法的一种实现方式,通过递归地计算每对顶点的可达性,构建出图的传递闭包。其算法步骤如下:

  1. 初始化传递闭包矩阵TransitiveClosure,将其设置为图的邻接矩阵。
  2. 对于每一对顶点(u,v),如果存在一条从u到v的边,则将TransitiveClosureu设置为1。
  3. 对于每一对顶点(u,v),以及所有其他顶点w,如果TransitiveClosureu和TransitiveClosurew均为1,则将TransitiveClosureu设置为1。
  4. 循环迭代第3步,直到传递闭包矩阵不再发生变化为止。

下面是自顶向下算法的具体代码示例,以邻接矩阵Graph和传递闭包矩阵TransitiveClosure为输入:

def transitive_closure(Graph, TransitiveClosure):
    num_vertices = len(Graph)

    for u in range(num_vertices):
        for v in range(num_vertices):
            if Graph[u][v]:
                TransitiveClosure[u][v] = 1

    for w in range(num_vertices):
        for u in range(num_vertices):
            for v in range(num_vertices):
                if TransitiveClosure[u][w] and TransitiveClosure[w][v]:
                    TransitiveClosure[u][v] = 1

    return TransitiveClosure

三、对比分析:

  1. 时间复杂度:自底向上算法和自顶向下算法的时间复杂度均为O(V^3),其中V表示顶点数。
  2. 空间复杂度:自底向上算法和自顶向下算法的空间复杂度均为O(V^2)。
  3. 实际应用:自底向上算法适用于图的规模较小的情况下,而自顶向下算法适用于图的规模较大的情况下。自底向上算法在计算时需要存储全部的邻接矩阵,而自顶向下算法可以利用递归的方式对图进行分割计算。
  4. 算法效率:自底向上算法在初始阶段需要将邻接矩阵复制到传递闭包矩阵中,而自顶向下算法则直接在邻接矩阵上进行计算,所以自顶向下算法在初始阶段的效率更高。

结论:
传递闭包算法的两种实现方式,自底向上算法和自顶向下算法,在时间复杂度和空间复杂度上基本相同,但在实际应用和初始阶段的效率上有所差异。根据具体的需求和图的规模选择合适的实现方式,以获得更好的运行效率和性能。

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
go语言闭包相关教程大全
go语言闭包相关教程大全

本专题整合了go语言闭包相关数据,阅读专题下面的文章了解更多相关内容。

137

2025.07.29

页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

409

2023.08.14

Golang 网络安全与加密实战
Golang 网络安全与加密实战

本专题系统讲解 Golang 在网络安全与加密技术中的应用,包括对称加密与非对称加密(AES、RSA)、哈希与数字签名、JWT身份认证、SSL/TLS 安全通信、常见网络攻击防范(如SQL注入、XSS、CSRF)及其防护措施。通过实战案例,帮助学习者掌握 如何使用 Go 语言保障网络通信的安全性,保护用户数据与隐私。

2

2026.01.29

俄罗斯Yandex引擎入口
俄罗斯Yandex引擎入口

2026年俄罗斯Yandex搜索引擎最新入口汇总,涵盖免登录、多语言支持、无广告视频播放及本地化服务等核心功能。阅读专题下面的文章了解更多详细内容。

480

2026.01.28

包子漫画在线官方入口大全
包子漫画在线官方入口大全

本合集汇总了包子漫画2026最新官方在线观看入口,涵盖备用域名、正版无广告链接及多端适配地址,助你畅享12700+高清漫画资源。阅读专题下面的文章了解更多详细内容。

156

2026.01.28

ao3中文版官网地址大全
ao3中文版官网地址大全

AO3最新中文版官网入口合集,汇总2026年主站及国内优化镜像链接,支持简体中文界面、无广告阅读与多设备同步。阅读专题下面的文章了解更多详细内容。

295

2026.01.28

php怎么写接口教程
php怎么写接口教程

本合集涵盖PHP接口开发基础、RESTful API设计、数据交互与安全处理等实用教程,助你快速掌握PHP接口编写技巧。阅读专题下面的文章了解更多详细内容。

10

2026.01.28

php中文乱码如何解决
php中文乱码如何解决

本文整理了php中文乱码如何解决及解决方法,阅读节专题下面的文章了解更多详细内容。

13

2026.01.28

Java 消息队列与异步架构实战
Java 消息队列与异步架构实战

本专题系统讲解 Java 在消息队列与异步系统架构中的核心应用,涵盖消息队列基本原理、Kafka 与 RabbitMQ 的使用场景对比、生产者与消费者模型、消息可靠性与顺序性保障、重复消费与幂等处理,以及在高并发系统中的异步解耦设计。通过实战案例,帮助学习者掌握 使用 Java 构建高吞吐、高可靠异步消息系统的完整思路。

10

2026.01.28

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
SQL 教程
SQL 教程

共61课时 | 3.6万人学习

C++教程
C++教程

共115课时 | 14.5万人学习

MySQL 初学入门(mosh老师)
MySQL 初学入门(mosh老师)

共3课时 | 0.3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号