mergesort在c#中需手动实现,因.net未提供内置方法,array.sort()等使用introsort而非归并排序;其实现要点包括分治策略、防溢出中点计算、临时数组合并及处理剩余元素。

MergeSort 在 C# 中必须手动实现,.NET 框架不提供内置的 MergeSort 方法;它不是 List<t>.Sort()</t> 或 Array.Sort() 的底层算法(它们用的是 introsort)。
为什么不能直接调用现成的 MergeSort
.NET 的排序 API 默认不暴露归并排序接口。即使你传入自定义 IComparer<t></t>,Array.Sort() 仍走 introsort(快排+堆排+插排混合),稳定性和分治结构都不满足归并排序需求。需要手写才能控制合并逻辑、保证稳定性、或用于教学/特殊场景(如外部排序、链表排序)。
基础递归版 MergeSort 实现要点
核心是「分而治之 + 合并有序子数组」。常见错误是索引越界或合并时遗漏元素。
- 递归终止条件必须是
left >= right(单个或零元素),不是left == right - 中点计算用
int mid = left + (right - left) / 2,避免left + right溢出(尤其大数组) - 合并时需额外空间:新建临时数组或使用原数组辅助区,不能边合并边覆盖原数据
- 合并循环要处理「左/右子数组剩余未拷贝元素」——这是最容易漏掉的 bug 点
示例片段(就地排序,返回新数组):
static int[] MergeSort(int[] arr) {
if (arr.Length <= 1) return arr;
int mid = arr.Length / 2;
var left = MergeSort(arr[..mid]);
var right = MergeSort(arr[mid..]);
return Merge(left, right);
}
<p>static int[] Merge(int[] left, int[] right) {
int[] result = new int[left.Length + right.Length];
int i = 0, j = 0, k = 0;
while (i < left.Length && j < right.Length) {
result[k++] = left[i] <= right[j] ? left[i++] : right[j++];
}
while (i < left.Length) result[k++] = left[i++];
while (j < right.Length) result[k++] = right[j++];
return result;
}优化:避免频繁数组分配的 Bottom-up 迭代版
递归版每次 new int[] 开销大,且有栈溢出风险(深度 ~log₂n)。迭代版用固定辅助数组 + 自底向上合并,更适合大数据量。
- 先申请一个与原数组等长的
temp数组复用 - 用
width控制当前子数组长度(1 → 2 → 4 → …) - 每轮对相邻两个
width长度的块合并,注意边界检查:mid = Math.Min(i + width - 1, n - 1) - 合并结果先写入
temp,再Array.Copy回原数组(或双缓冲交替)
关键参数差异:Array.Sort() 是 in-place 且不稳定;你的 MergeSort 若想 in-place 合并,复杂度会升到 O(n²),不推荐——接受 O(n) 额外空间才是标准做法。
用在 List 或自定义类型时要注意什么
泛型版本必须支持比较:要么约束为 IComparable<t></t>,要么接收 Comparison<t></t> 或 IComparer<t></t> 参数。
- 别直接改
List<t></t>内部数组(list.ToArray()是安全副本) - 若 T 是引用类型,排序只重排引用,不影响对象本身
- 稳定性依赖合并时的「comparer.Compare(a, b) ,不是
,否则破坏稳定性 - 对大对象(如
string或自定义类),避免在比较器里做重操作(如正则匹配)
性能上,MergeSort 始终是 O(n log n),但常数因子比 Array.Sort() 大约 2–3 倍;仅在需要稳定排序、链表排序、或数据无法随机访问时才值得替换。
真正难的不是写出来,而是确保合并循环收尾逻辑全覆盖,以及泛型比较器和边界条件在各种输入下不崩——多用空数组、单元素、已排序、逆序这四类 case 测一遍。










