0

0

有向图之任务调度拓扑图介绍

零下一度

零下一度

发布时间:2017-06-25 10:59:34

|

2950人浏览过

|

来源于php中文网

原创

1.有向图的数据类型

使用Bag表示有向图,其中边v->w表示为顶点v所对应的邻接链表中包含一个w顶点,与无向图不同的是,这里每条边只会出现一次.有向图的数据结构类型如下:

public class Digraph {private final int V;private int E;private Bag[] adj;public Digraph(int V) {this.V=V;this.E=0;
        adj=(Bag[])new Bag[V];for(int v=0;v();
        }
    }public int V() {return V;
    }public int E() {return E;
    }//添加一条边v->w,由于是有向图只要添加一条边就可以了public void addEdge(int v,int w) {
        adj[v].add(w);
        E++;
    }public Iterable adj(int v) {return adj[v];
    }//返回当前图的一个反向的图public Digraph reverse() {
        Digraph R=new Digraph(V);for(int v=0;v

 

2.有向图中的可达性

无向图的连通性相似,同利用深度优先搜索可以解决有向图中

单点可达性问题:即:给定一幅有向图和一个起点s,回答是否存在一条从s到达给定顶点v的有向路径的问题.

多点可达性问题:给定一幅有向图和顶点的集合,回答是否存在一条从集合中的任意顶点到达给定顶点v的有向路径?

public class DirectedDFS {private boolean[] marked;//从G中找出所有s可达的点public DirectedDFS(Digraph G,int s) {
        marked=new boolean[G.V()];
        dfs(G,s);
    }//G中找出一系列点可达的点public DirectedDFS(Digraph G,Iterable sources) {
        marked=new boolean[G.V()];for(int s:sources) {if(!marked[s]) dfs(G,s);
        }
    }//深度优先搜素判断.private void dfs(Digraph G, int v) { 
        marked[v]=true;for(int w:G.adj(v)) {if(!marked[w]) dfs(G,w);
        }
    }//v是可达的吗public boolean marked(int v) {return marked[v];
    }
}

多点可达性问题的一个重要时机应用是在典型的内存管理系统中,包括许多java的实现。在一个有向图中,一个顶点表示一个对象,一条边则表示一个对象对另一个对象的引用。

这个模型很好表现了运行中的java程序的内存使用状况。在程序执行的任何时候都有某些对象是可以被直接访问的,而不能通过这些对象访问到的所有对象都应该被回收以便

释放内存。它会周期性的运行一个类似于DirectedDFS的有向图可达性算法来标记所有可以被访问到的对象。

 

3.有向图的寻路

和无向图类似,有向图中常见的问题:

单点有向路径。给定一幅有向图和一个起点,回答“从s到给定目的顶点v是否存在一条有向路径?如果有,找出这条路径”

单点最短有向路径。给定一幅有向图和一个起点,回答“从s到给定目的顶点v是否存在一条有向路径,如果有,找出其中最短的那条(所含边数最少)”

 

4.调度问题—拓扑排序

4.1寻找有向环

如果一个有优先限制的问题中存在有向环,那么这个问题肯定是无解的。所以需要进行有向环的检测。

下面的代码可以用来检测给定的有向图中是否含有有向环,如果有,则按照路径的方向返回环上的所有顶点.

在执行dfs的时候,查找的是从起点到v的有向路径,onStack数组标记了递归调用的栈上的所有顶点,同时也加入了edgeTo数组,在找到有向环的时候返回环中的所有顶点.

/**
 * 有向图G是否含有有向环
 * 获取有向环中的所有顶点
 * @author Administrator
 * */public class DirectedCycle {private boolean[] marked;    private int[] edgeTo;private Stack cycle;    //有向环中的所有顶点private boolean[] onStack;        //递归调用的栈上的所有顶点public DirectedCycle(Digraph G) {
        edgeTo=new int[G.V()];
        onStack=new boolean[G.V()];
        marked=new boolean[G.V()];for(int v=0;v();for(int x=v;x!=w;x=edgeTo[x])
                    cycle.push(x);
                cycle.push(w);
                cycle.push(v);
            }
        }//dfs方法结束,对于该点的递归调用结束.该点指向的所有点已经遍历完毕onStack[v]=false;
    }private boolean hasCycle() {return cycle!=null;
    }public Iterable cycle() {return cycle;
    }
}

 

4.2 拓扑排序

拓补排序:给定一幅有向图,将所有的顶点排序,使得所有的有向边均从排在前面的元素指向排在后面的元素.如果存在有向环的话,那么拓补排序无法完成.

  要实现有向图的拓补排序,利用标准深度优先搜索顺序即可完成任务.这里顶点会有三种排列顺序:

Grok
Grok

马斯克发起的基于大语言模型(LLM)的AI聊天机器人TruthGPT,现用名Grok

下载

  1.前序:在递归调用前将顶点加入队列

  2.后序:在递归调用之后将顶点加入队列

  3.逆后序:在递归调用之后将顶点压入栈.

  具体的操作见下面的代码:

//有向图中基于深度优先搜索的拓补排序public class DepthFirstOrder {private boolean[] marked;private Queue pre;        //所有顶点的前序排列private Queue post;    //所有顶点的后序排列private Stack reversePost;//所有顶点的逆后序排列public DepthFirstOrder(Digraph G) {
        pre=new Queue<>();
        post=new Queue<>();
        reversePost=new Stack<>();
        marked=new boolean[G.V()];        for(int v=0;v pre() {return pre;
    }public Iterable post() {return post;
    }public Iterable reversePost() {return reversePost;
    }
}

遍历的顺序取决于这个数据结构的性质以及是在递归调用之前还是之后进行保存。

前序:在递归调用之前将顶点加入队列。

后序:在递归调用之后将顶点加入队列。

逆后序:在递归调用之后将顶点压入栈。

 

前序就时dfs()的调用顺序;后序就是顶点遍历完成的顺序;逆后序就是顶点遍历完成顺序的逆。

拓补排序的实现依赖于上面的API,实际上拓补排序即为所有顶点的逆后序排列

拓补排序的代码如下:

public class Topological {private Iterable order;    //顶点的拓补排序public Topological(Digraph G) {
        DirectedCycle cyclefinder=new DirectedCycle(G);if(!cyclefinder.hasCycle()) {//只有无环才能进行拓补排序DepthFirstOrder dfs=new DepthFirstOrder(G);
            order=dfs.reversePost();
        }
    }public Iterable order() {return order;
    }public boolean isDAG() {return order!=null;
    }
}

 

5.有向图的强连通性

定义:如果两个顶点v和w是互相可达的,则称它们为强连通的.也就是说既存在一条从v到w的有向路径也存在一条从w到v的有向路径.

如果一幅有向图中的任意两个顶点都是强连通的,则称这副有向图也是强连通的.任意顶点和自己都是强连通的.

下面的代码采用如下步骤来计算强连通分量以及两个点是否是强连通的:

  1.在给定的有向图中,使用DepthFirsetOrder来计算它的反向图GR的逆后序排列

  2.按照第一步计算得到的顺序采用深度优先搜索来访问所有未被标记的点

  3.在构造函数中,所有在同一个递归dfs()调用中被访问到的顶点都是在同一个强连通分量中.

  下面的代码实现遵循了上面的思路:

/**
 * 该算法实现的关键:
 * 使用深度优先搜索查找给定有向图的反向图GR.根据由此得到的所有顶点的逆后序
 * 再次用深度优先搜索处理有向图G.其构造函数的每一次递归调用所标记的顶点都在
 * 同一个强连通分量中.
 * 解决问题:
 * 判断两个点是否是强连通的
 * 判断总共有多少个连通分量
 * @author Administrator
 * */public class KosarajuSCC {private boolean[] marked;//已经访问过的顶点private int[] id;        //强连通分量的标识符private int count;        //强联通分量的数量public KosarajuSCC(Digraph G) {
        marked=new boolean[G.V()];
        id=new int[G.V()];
        DepthFirstOrder order=new DepthFirstOrder(G.reverse());for(int s:order.reversePost()) {if(!marked[s]) {
                dfs(G,s);
                count++;
            }
        }
    }private void dfs(Digraph G, int v) {
        marked[v]=true;
        id[v]=count;for(int w:G.adj(v)) {if(!marked[w]) {
                dfs(G,w);
            }
        }
    }public boolean stronglyConnected(int v,int w) {return id[v]==id[w];
    }public int id(int v) {return id[v];
    }public int count() {return count;
    }
}

 

热门AI工具

更多
DeepSeek
DeepSeek

幻方量化公司旗下的开源大模型平台

豆包大模型
豆包大模型

字节跳动自主研发的一系列大型语言模型

通义千问
通义千问

阿里巴巴推出的全能AI助手

腾讯元宝
腾讯元宝

腾讯混元平台推出的AI助手

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

讯飞写作
讯飞写作

基于讯飞星火大模型的AI写作工具,可以快速生成新闻稿件、品宣文案、工作总结、心得体会等各种文文稿

即梦AI
即梦AI

一站式AI创作平台,免费AI图片和视频生成。

ChatGPT
ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

相关专题

更多
Golang处理数据库错误教程合集
Golang处理数据库错误教程合集

本专题整合了Golang数据库错误处理方法、技巧、管理策略相关内容,阅读专题下面的文章了解更多详细内容。

2

2026.02.06

java多线程方法汇总
java多线程方法汇总

本专题整合了java多线程面试题、实现函数、执行并发相关内容,阅读专题下面的文章了解更多详细内容。

0

2026.02.06

1688阿里巴巴货源平台入口与批发采购指南
1688阿里巴巴货源平台入口与批发采购指南

本专题整理了1688阿里巴巴批发进货平台的最新入口地址与在线采购指南,帮助用户快速找到官方网站入口,了解如何进行批发采购、货源选择以及厂家直销等功能,提升采购效率与平台使用体验。

90

2026.02.06

快手网页版入口与电脑端使用指南 快手官方短视频观看入口
快手网页版入口与电脑端使用指南 快手官方短视频观看入口

本专题汇总了快手网页版的最新入口地址和电脑版使用方法,详细提供快手官网直接访问链接、网页端操作教程,以及如何无需下载安装直接观看短视频的方式,帮助用户轻松浏览和观看快手短视频内容。

15

2026.02.06

C# 多线程与异步编程
C# 多线程与异步编程

本专题深入讲解 C# 中多线程与异步编程的核心概念与实战技巧,包括线程池管理、Task 类的使用、async/await 异步编程模式、并发控制与线程同步、死锁与竞态条件的解决方案。通过实际项目,帮助开发者掌握 如何在 C# 中构建高并发、低延迟的异步系统,提升应用性能和响应速度。

10

2026.02.06

Python 微服务架构与 FastAPI 框架
Python 微服务架构与 FastAPI 框架

本专题系统讲解 Python 微服务架构设计与 FastAPI 框架应用,涵盖 FastAPI 的快速开发、路由与依赖注入、数据模型验证、API 文档自动生成、OAuth2 与 JWT 身份验证、异步支持、部署与扩展等。通过实际案例,帮助学习者掌握 使用 FastAPI 构建高效、可扩展的微服务应用,提高服务响应速度与系统可维护性。

6

2026.02.06

JavaScript 异步编程与事件驱动架构
JavaScript 异步编程与事件驱动架构

本专题深入讲解 JavaScript 异步编程与事件驱动架构,涵盖 Promise、async/await、事件循环机制、回调函数、任务队列与微任务队列、以及如何设计高效的异步应用架构。通过多个实际示例,帮助开发者掌握 如何处理复杂异步操作,并利用事件驱动设计模式构建高效、响应式应用。

7

2026.02.06

java连接字符串方法汇总
java连接字符串方法汇总

本专题整合了java连接字符串教程合集,阅读专题下面的文章了解更多详细操作。

25

2026.02.05

java中fail含义
java中fail含义

本专题整合了java中fail的含义、作用相关内容,阅读专题下面的文章了解更多详细内容。

28

2026.02.05

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
mysql8主从复制原理底层详解
mysql8主从复制原理底层详解

共1课时 | 554人学习

Web pack入门视频教程
Web pack入门视频教程

共9课时 | 2.5万人学习

Python教程之Tkinter视频教程
Python教程之Tkinter视频教程

共14课时 | 4万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号