0

0

详解一道关于反三角函数的定积分题

WBOY

WBOY

发布时间:2024-01-23 08:36:05

|

2610人浏览过

|

来源于Excel办公网

转载

一道反三角函数的定积分题目麻烦详细过程

∫ (arcsinx)² dx

= x(arcsinx)² - ∫ x d(arcsinx)²

= x(arcsinx)² - ∫ x • 2(arcsinx) • 1/√(1 - x²) • dx

= x(arcsinx)² - 2∫ x(arcsinx)/√(1 - x²) dx

= x(arcsinx)² - 2∫ arcsinx d[-√(1 - x²)]

= x(arcsinx)² + 2(arcsinx)√(1 - x²) - 2∫ √(1 - x²) d(arcsinx)

= x(arcsinx)² + 2(arcsinx)√(1 - x²) - 2∫ √(1 - x²)/√(1 - x²) dx

= x(arcsinx)² + 2(arcsinx)√(1 - x²) - 2x + C

这是不定积分

定积分就代入就有了

反三角函数的原函数

用分部积分法得:

I = ∫ arcsinx dx = x arcsinx - ∫ [x/√(1-x^2)] dx

= x arcsinx + (1/2) ∫ [1/√(1-x^2)] d(1-x^2) = x arcsinx + √(1-x^2) +C

I = ∫ arccosx dx = x arccosx + ∫ [x/√(1-x^2)] dx

= x arccosx - (1/2) ∫ [1/√(1-x^2)] d(1-x^2) = x arccosx - √(1-x^2) +C

I = ∫ arctanx dx = x arctanx - ∫ [x/(1+x^2)] dx

= x arctanx - (1/2) ∫ [1/(1+x^2)] d(1+x^2) = x arctanx - (1/2)ln(1+x^2) +C

它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。

扩展资料:

函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);为了使研究方便,常要所选择的区间包含0到π/2的角。

所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。

为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2

参考资料来源:百科——反三角函数

反三角函数的不定积分如何证明

.积分区间对称的先看式中有没有奇函数,比如这道题平方展开为:1+2x(1-x^2)^1/2,注意到2x(1-x^2)^1/2是奇函数,所以它在对称区间的积分为0,仅剩"1",所以结果为2

2.出现arctan,ln之类的一定要想办法对其做导数,x*arctanx,要想对arctanx做导,就必须用分部积分:

Open Voice OS
Open Voice OS

OpenVoiceOS是一个社区驱动的开源语音AI平台

下载

把x放到后面,原积分式化为:1/2arctanx d(x^2),分部积分后半部的积分式为(x^2)/(1+x^2),这个应该会积了吧,关键是要知道对arctan导

此题结果为:1/2(x^2*arctanx - x + arctanx + C)

这边只要多做题思路就通了,真正难的在后面的多重积分和曲面曲线积分,可以说是变态级的

分部积分公式推导

分部积分公式是非常重要的的一个公式,有了它能在某些积分题目中利用公式快速的解出答案。同时也能在某些被积函数不能直接找到原函数的情况下解出答案。

一道反三角函数的定积分题目麻烦详细过程

扩展资料:

1.分部积分法是微积分学中的一类重要的、基本的计算积分的方法。

2.它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接结果的积分形式,转化为等价的易出结果的积分形式的。

3.常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。

4.不定积分的公式(1)、∫ a dx = ax + C,a和C都是常数

(2)、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

(3)、∫ 1/x dx = ln|x| +

(4)、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠

(5)、∫ e^x dx = e^x + C

(6)、∫ cosx dx = sinx +

(7)、∫ sinx dx = - cosx + C

(8)、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

5.不定积分的方法:

第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,出最终的结果。

分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f'(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。

参考资料:百科:分部积分法

相关专题

更多
Golang gRPC 服务开发与Protobuf实战
Golang gRPC 服务开发与Protobuf实战

本专题系统讲解 Golang 在 gRPC 服务开发中的完整实践,涵盖 Protobuf 定义与代码生成、gRPC 服务端与客户端实现、流式 RPC(Unary/Server/Client/Bidirectional)、错误处理、拦截器、中间件以及与 HTTP/REST 的对接方案。通过实际案例,帮助学习者掌握 使用 Go 构建高性能、强类型、可扩展的 RPC 服务体系,适用于微服务与内部系统通信场景。

8

2026.01.15

公务员递补名单公布时间 公务员递补要求
公务员递补名单公布时间 公务员递补要求

公务员递补名单公布时间不固定,通常在面试前,由招录单位(如国家知识产权局、海关等)发布,依据是原入围考生放弃资格,会按笔试成绩从高到低递补,递补考生需按公告要求限时确认并提交材料,及时参加面试/体检等后续环节。要求核心是按招录单位公告及时响应、提交材料(确认书、资格复审材料)并准时参加面试。

44

2026.01.15

公务员调剂条件 2026调剂公告时间
公务员调剂条件 2026调剂公告时间

(一)符合拟调剂职位所要求的资格条件。 (二)公共科目笔试成绩同时达到拟调剂职位和原报考职位的合格分数线,且考试类别相同。 拟调剂职位设置了专业科目笔试条件的,专业科目笔试成绩还须同时达到合格分数线,且考试类别相同。 (三)未进入原报考职位面试人员名单。

58

2026.01.15

国考成绩查询入口 国考分数公布时间2026
国考成绩查询入口 国考分数公布时间2026

笔试成绩查询入口已开通,考生可登录国家公务员局中央机关及其直属机构2026年度考试录用公务员专题网站http://bm.scs.gov.cn/pp/gkweb/core/web/ui/business/examResult/written_result.html,查询笔试成绩和合格分数线,点击“笔试成绩查询”按钮,凭借身份证及准考证进行查询。

11

2026.01.15

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

65

2026.01.14

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

36

2026.01.13

PHP 高性能
PHP 高性能

本专题整合了PHP高性能相关教程大全,阅读专题下面的文章了解更多详细内容。

75

2026.01.13

MySQL数据库报错常见问题及解决方法大全
MySQL数据库报错常见问题及解决方法大全

本专题整合了MySQL数据库报错常见问题及解决方法,阅读专题下面的文章了解更多详细内容。

21

2026.01.13

PHP 文件上传
PHP 文件上传

本专题整合了PHP实现文件上传相关教程,阅读专题下面的文章了解更多详细内容。

35

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Swoft2.x速学之http api篇课程
Swoft2.x速学之http api篇课程

共16课时 | 0.9万人学习

go语言零基础开发内容管理系统
go语言零基础开发内容管理系统

共34课时 | 2.5万人学习

PHP会话控制/文件上传/分页技术
PHP会话控制/文件上传/分页技术

共22课时 | 2.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号